• 2022-10-25
    设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明存在[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],使得[tex=3.214x1.286]2JS6BJRrTSeJjobiUCqEXA==[/tex].
  • 证:因为[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,故存在[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正交矩阵[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex],使得[tex=12.429x6.5]j0leis6PdvuwEr+DyYsjr1HkHL9BudjdJ/EXpR0dqeGlctEDVv8Ij20OSAt19jteHTeb9X/Accvj8rYv/p3GKAHyZazRkp8V/0QwXxjuMT1dMUn8iLzvgKRvQZdB+o/9FQI3pMkgpPV0AhImph5l5g/Rto3/RmDvo9JfK246SB8=[/tex],即[tex=13.0x6.5]NKJRtg8DX8RHlHACUQ58FyEJqlkTh8rSb95MOX8iKx5OvIj+UdSxdo9pS0J6qatqp0kwJPqgb36BLo6VtMS3UduHsDVa1HXtnEKBfVfyKKSv3lZiLuu2pNqbXoyUIBOlFJozFIoFMi2pLeH5Wy0AVkrevjz0T4/9lx0rjMpDxks=[/tex],其中[tex=1.0x1.286]Dh9aC9ljs+LcuOKN0QxEuejUxsIwpLapA6P2aNIbyb4=[/tex],[tex=1.0x1.286]lOgz3YB3DqxBfxKtK/X9I5XacRCF/sKdFDTi3J4GdW8=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=1.071x1.286]sDo7eqw0QfvizHA4RpIPo4in97mGPabp5RniS5+PAgM=[/tex]为[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值,故[tex=2.714x1.286]g6Vi3cgLivvGbMOCrZSUXIY6NYBhNTziyp2BNgR+r+4=[/tex][tex=6.5x1.286]X4QqGfYOOmbLDOEVDqk0AZluWfSUAczCq4tF2qXUpVY=[/tex].取矩阵[tex=15.5x6.5]NbQfAcOIRnb5BqN+2cIyUh0Kd3SGulUWYVB53HEW+Z3M+vmwRIA2DQdSxrERgwnrueUbJjHhUYnfAG7/xouvSW6mY9sDp4YP9qWgBn/g3sDsgmWtFU53xPpognPIg1EAareGCQZKcXfstJWw7LniPTgpDCcuN0O6dUymOycW0a9TxARuD0gSFuk+0pz+iL8o[/tex],于是矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为实对称矩阵且其特征值[tex=2.071x1.286]f1QOIfp/DjLK1+E6iXtJTJ6Cuqa6AZhiVPMQPFs0nkc=[/tex],[tex=2.071x1.286]f1QOIfp/DjLK1+E6iXtJTJHCyu1wtg7K/pVjSb1wEtI=[/tex],[tex=1.143x1.286]PZ3wc82RrbgX5KwVcyJcmA==[/tex],[tex=2.143x1.286]f1QOIfp/DjLK1+E6iXtJTOvdy5J2TCHyKpVA4p8Gzx8=[/tex]均大于零,故[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为正定矩阵,且[tex=18.786x6.5]Yd+GCP8JIXbRbKs+uh83Qk3A/8KKw18xktvRHx0KSaGQ9n/iuBHaOPg7xPyGyEO2288aHF50pZWzD+bCihEzfuXiYXE8B96+OhQbEY4NXIwgncU/Dlab5PGSBFsFVw8EF7LthX6Cdb1Qv6btGH0u3F+6rUR2nKR0SLiysAm1MOUbe6eNjZhCnows0OQA53e+[/tex],[tex=11.357x6.5]iGwSLqwL4b7uil5p80t5Gnwhzs0d5RnX6LIFjZvPCvl2/sIewslOhPp7uGv/hG+bXQcanbvYTzorMFmu/6tWXzE7FPWcMHto5y1B1tAVReKKWGKJFJEtlE7N9zyYUgCrnnpt235aFnvvnx3LNx9Fzdj1jxiYax8zMWBoERAbhGw=[/tex][tex=12.0x6.5]myq7Q2yslsFzaD9kuOMrKpeEF6KurtPv2BmVGhynrxb0EYUM717qCHzid7jT6UdqqulpisTfDU8hYuJ4SCvp9fDyfFy4ovxjUTz5HsY/d7UWIne0UgEq9RLCJCCP7YvsSpq4iArJCp44mixCXxvxxVayqPhoZhKDJ16LriUBSM4=[/tex][tex=1.786x1.286]3n9Ajuu4ZxpQbW2MfYnlNw==[/tex].

    举一反三

    内容

    • 0

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶实反对称矩阵,证明[tex=3.143x1.286]74sXWPzy2V6V4XDe8D+g8A==[/tex]为正定矩阵.

    • 1

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,且[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为对称矩阵,证明[tex=3.0x1.286]+Kuu2eFUus2l0EouIu5RjNd8NcgWY09erbUFzkPnuyk=[/tex]也是对称矩阵。

    • 2

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵。证明 : 存在一个[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶非零矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex], 使[tex=3.571x1.286]e+srJojTm8Kf62t4In3fUA==[/tex]的充要条件是[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex]。

    • 3

      设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,且[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]合同,证明:[tex=5.214x1.286]FPVBIVvmXc/lzHHB/iDA4w==[/tex].

    • 4

      若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶对称矩阵,[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex] 阶矩阵,证明[tex=2.929x1.286]PgI7SwgsQ9tTXWFTdkSmxw==[/tex]为对称矩阵。