设 [tex=3.571x1.357]7K89EAiqbgRkVf5frr2x25+2ay1ha16/s2MrqtRX+/U=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵, 定义函数 [tex=6.5x2.857]yI0/YP6f+1zdqtC3LVgdQx5kfjBFfACdIlTZbt+nvkmp6t9yq8iuvsaN4P780Vx0[/tex], 设 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶可逆矩阵, 使得对任 意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 成立: [tex=7.643x1.571]UYfuvlBjvyBtnTMT/LcB68AO+Z9we4bTHzeszC2uNjY=[/tex], 证明: 存在非零常数 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex], 使得 [tex=4.0x1.357]9H+B938/Tud1uW1GYTpYFhCan8KCnZCA7uSC8i04frA=[/tex]
举一反三
- 证明:设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]不可逆,则存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶非零的方阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex],使得[tex=2.786x1.0]vO6oJG3HrH4S8DSEg9aQaQ==[/tex]。
- 设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 满足 [tex=2.714x1.214]+ZPJntj7xYfllBYE3zVGBw==[/tex],证明(1)[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆;(2)[tex=9.786x1.357]06AJfdzBDu7SdZ9anbGLIPmuCvp8KJZXpIhBloDxMHk=[/tex] .
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,证明: 存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=9.143x1.429]XRMmUOtjtKMyseaeIn9jPM1TnNKlMhqAAioUZ3jWn/FX+SyCCFosC01uB/CWa/Kl[/tex], 其中[tex=0.714x1.0]AiT6fhT2pvop+UvpD2oClg==[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对角矩阵。
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的每一行上都恰有2个元素为1,而其他元素为零,[tex=0.571x1.0]EnSTrJsHc9I00M+IaN7q+w==[/tex]是元素全为1的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵。求出所有适合[tex=5.0x1.357]4+sHTHuBuyOCEg+k8CDzeQ==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶幂零方阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶可逆方阵,且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 可换,则 [tex=5.071x1.214]RN2thfSI1MmKxRcibVWDuJHiSryPX2cHjTCV9twFdmY=[/tex] 都是可逆矩阵.