求证: [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=3.571x1.357]7K89EAiqbgRkVf5frr2x25+2ay1ha16/s2MrqtRX+/U=[/tex] 是正定阵, 其中 [tex=5.929x2.643]FeWLmF3VqZSfVJC/QokCEn4mIi8d5os7+du0n1ggFpfRcjGRpWTVy06gumtSUyK8[/tex] 是任意的正整数.
举一反三
- 证明, [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=3.571x1.357]7K89EAiqbgRkVf5frr2x25+2ay1ha16/s2MrqtRX+/U=[/tex]是正定的,必要且只要对于任意[tex=8.929x1.143]d81iwVDPCo2Pvt1l0Mp5tqgyiGep7S9S9dNH84YBmb0nqz+78AiOMxynWiGwGxph[/tex],[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]阶子式[tex=20.071x4.5]TIwZYBkNsy31H1RNd/OloB0w8VG7gvV5wru2KiA0NQ3Sb9S/muuh23fLjA2oE4sBA6IBT9ZsVxS6GnNI0yyEFUjMuayi+5ujIgVhwhVi4bionz79/ALTbwkNOFfxy41W/E3hqpOwbvhDucVImS7VvEBAI8m1VIDjQZIpFU3fIkwpz1clplRHDtGwXnXthAfNmkf5+keaYkeTle7s+PqdEv/jbzI74v9DhySfD04oriqlhAYGFNFvLvge7cxM3+079ShOKtFpGwtydqkly9wndKbDTmw+8Kjj96125weynB1x4K3tCxSOWt4RIE4jIfumSJIO4pm1kd3OfNr3uLEEAEUns5uWppLcy9y89fbmtZVg0SfWAKo8L3BdkpO4fcPeJj9ijjFE7bZ5g03cN9tSUg==[/tex]
- 证明, [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=3.571x1.357]7K89EAiqbgRkVf5frr2x25+2ay1ha16/s2MrqtRX+/U=[/tex]是正定的,必要且只要对于任意[tex=8.929x1.143]d81iwVDPCo2Pvt1l0Mp5tqgyiGep7S9S9dNH84YBmb0nqz+78AiOMxynWiGwGxph[/tex],[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]阶子式[tex=20.071x4.5]TIwZYBkNsy31H1RNd/OloB0w8VG7gvV5wru2KiA0NQ3Sb9S/muuh23fLjA2oE4sBA6IBT9ZsVxS6GnNI0yyEFUjMuayi+5ujIgVhwhVi4bionz79/ALTbwkNOFfxy41W/E3hqpOwbvhDucVImS7VvEBAI8m1VIDjQZIpFU3fIkwpz1clplRHDtGwXnXthAfNmkf5+keaYkeTle7s+PqdEv/jbzI74v9DhySfD04oriqlhAYGFNFvLvge7cxM3+079ShOKtFpGwtydqkly9wndKbDTmw+8Kjj96125weynB1x4K3tCxSOWt4RIE4jIfumSJIO4pm1kd3OfNr3uLEEAEUns5uWppLcy9y89fbmtZVg0SfWAKo8L3BdkpO4fcPeJj9ijjFE7bZ5g03cN9tSUg==[/tex]
- 设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵[tex=3.571x1.357]7K89EAiqbgRkVf5frr2x25+2ay1ha16/s2MrqtRX+/U=[/tex] 的行列式等于零, 证明: [tex=1.143x1.071]dlHppezehhhJt6WmQH9aoA==[/tex] 的秩不超过 1.
- 证明下列关于 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵 [tex=3.571x1.357]7K89EAiqbgRkVf5frr2x25+2ay1ha16/s2MrqtRX+/U=[/tex] 的命题等价:(1) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正定阵;(2) 存在主对角线上元素全等于 1 的上三角矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=4.214x1.143]rBiqGaSDVnQOpJm3gHRQduX6byHelpj3JKtBTHuEcoE=[/tex], 其中 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 是正定对角矩阵;(3) 存在主对角线上元素全为正的上三角矩阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex], 使 [tex=3.429x1.143]hxFWgRCv5aAQupvKU7mh2X67EnHzc+kizXjoVHgcPDY=[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:(1) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl/jgx7HDqG8OMKcZZrhVcXy6+JovSSXitpjCbh6SDQEN[/tex](2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为半正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl8wUbDZMgCOnJA1lQifZKR+Dh2C+JkyFhRzqn66dyW91[/tex]