A: $\frac{{2{\sigma ^2}}}{N}$
B: $\frac{{{\sigma ^2}}}{{N - 1}}$
C: $\frac{{{\sigma ^2}}}{N}$
D: $\frac{{2{\sigma ^4}}}{N}$
举一反三
- 在试验次数为$N$的二水平完全因析试验中,假设对每次试验的观测是独立的,且服从方差为$\sigma^2$的正态分布,则二阶因子交互效应的方差为 A: $\sigma^2$ B: $\frac{1}{N}\sigma^2$ C: $\frac{2}{N}\sigma^2$ D: $\frac{4}{N}\sigma^2$
- 1.下列数列中,收敛但极限不为$1$的是 A: ${{(2+\frac{1}{n})}^{\frac{1}{n}}}$ B: ${{n}^{\frac{1}{n}}}$ C: $\frac{1}{{{n}^{2}}+1}+\frac{2}{{{n}^{2}}+2}+\cdots +\frac{n}{{{n}^{2}}+n}$ D: $\frac{{{(n!)}^{2}}}{{{n}^{n}}}$
- 在对正态总体均值的检验中,若方差已知,则选用统计量( ) A: $U=\frac{\overline{X}-\mu_{0}}{\sigma/\sqrt{n}}$ B: $U=\frac{\overline{X}-\mu_{0}}{\sigma/\sqrt{n-1}}$ C: $U=\frac{\overline{X}-\mu_{0}}{\sigma^{2}/\sqrt{n}}$ D: $U=\frac{\overline{X}-\mu_{0}}{\sigma^{2}/\sqrt{n-1}}$
- 设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
- 设总体X~N($\mu,{\sigma}^2$),$\mu,{\sigma}^2$未知,$x_{1},x_{2},...,x_{n} $ 是来自该总体的样本,记$\overline x=\frac{1}{n}\sum\limits_{i = 1}^{n}{x_{i}}$,则对假设检验$ H_{0}:u=u_{0},H_{1}:u!=u_{0}$的拒绝域为()
内容
- 0
${X_1},{X_2},...,{X_n}$是来自均匀分布X~U(-a,a)的样本,用矩估计法估计参数a为() A: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ B: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k^2} )^{\frac{1}{2}}}$ C: ${(\frac{3}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$ D: ${(\frac{2}{n}\sum\limits_{k = 1}^n {x_k} )^{\frac{1}{2}}}$
- 1
函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
- 2
下面级数求和错误的是 A: $\sum_{n=0}^\infty q^n = \frac{1}{1-q} (0\lt q\lt1) $ B: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{x}{1-x} (|x|\lt 1) $ C: $\sum_{n=1}^\infty \frac{1}{{n!}} = e $ D: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{1}{1-x} (x>1) $
- 3
若\(X\sim N(\mu, \sigma^2)\),则 \(Y=aX+b\sim N\left(a\mu+b, (a\sigma)^2\right)\). 其中\(a\ne 0\).
- 4
下列数列中,不是无穷大的是 A: $\frac{n}{\ln n}$ B: $-{{n}^{2}}+n$ C: $\frac{n({{n}^{\frac{7}{3}}}+1)}{{{n}^{\frac{15}{4}}}}$ D: ${{(-1)}^{n}}{{n}^{3}}+{{n}^{2}}-10n$