举一反三
- 产品[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是互补品。需求函数;[br][/br]$Q_{X}=640-4 P_{X}-P_{Y}, \quad Q_{Y}=\frac{1}{2} Q_{X}-\frac{1}{2} P_{Y}$\ \假定两者短期供给是固定的:[br][/br]$Q_{X}=500, Q_{Y}=240$求:假如[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]产品的供给增加了20,会对两种商品的价格产生什么影响?
- 已知随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]分别服从正态分布[tex=3.571x1.571]LKQeuAG+lccjscSi/mvfCvzDqd9MqChpWk3e5kmY9Cg=[/tex]和[tex=3.571x1.571]i4hgzHtX06tgjRPvkXWEtL+vNrZ+q4UnE4gOEFnzFtE=[/tex],且[tex=2.643x1.357]JzSsOLHw1BX893c+vpTwSw==[/tex]服从二维正态分布,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的相关系数为-0.5,设[tex=5.714x1.357]ySCDw/L8+NuosTJwn7wLNA==[/tex].(1)求[tex=0.714x1.0]A/RYZa+bKKYYpjzBS/r5ng==[/tex]的数学期望[tex=1.429x1.0]ECaqJcDSADx+emhwwCmoHw==[/tex]和方差[tex=1.571x1.0]0vvcGCX6TkeIGFpgKeBwZg==[/tex];(2)求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.714x1.0]A/RYZa+bKKYYpjzBS/r5ng==[/tex]的相关系数;(3)问[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.714x1.0]A/RYZa+bKKYYpjzBS/r5ng==[/tex]是否相互独立?为什么?
- (1)已知随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的概率密度为[tex=6.143x2.357]tkn+VHNw040mX7Mnz9nsAF0eyNkNugblbKe3iUf9QqA=[/tex],[tex=6.071x1.071]KiKpa9Wj2I7rAdnmZW6gmnrOtKgtUZaMAvd/RonKgdg=[/tex],求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布函数。
- 产品[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是互补品。需求函数;[br][/br]$Q_{X}=640-4 P_{X}-P_{Y}, \quad Q_{Y}=\frac{1}{2} Q_{X}-\frac{1}{2} P_{Y}$\ \假定两者短期供给是固定的:[br][/br][tex=7.571x1.214]CfZnuLHqwTFF3JM+8Dj0b8jBQ/cIxAsLu6pTzTLTHBE=[/tex]求:这两种产品的均衡价格为多少?
- 某企业仅生产一种产品,唯一可变要素是劳动,也有固定成本。短期生产函数为[tex=9.571x1.357]TpRX2cQllAngkuzsxilfbIjwDinvcSQJdVeTlV55eO0=[/tex],其中,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]是每周产量,单位为吨,[tex=0.714x1.0]ravtxd2oof9d0U26ZFAIhw==[/tex]是雇用工人数。[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的价格10元/吨。总固定成本15000元,若企业发现只值得雇用36个工人,每周纯利润是多少?
内容
- 0
设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的密度函数为 [tex=11.071x2.429]b0AejGK8cZqfdbG3Tux+udRW9Fp8cAkzLyQb1JEUbnV4/ZDO7AjHjsHn+NZy68TUpK/GwMftqSPDXUTx50aVrQ==[/tex], 求 (1) 常数 [tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex] 的值;(2) [tex=7.857x2.786]YjcHvRQshYm9dgcyyroPhKMhp+fPT4ss3eOw+rSlE6+9ylk76knio7NwOyX8RGfv[/tex]; (3) [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布函数 [tex=2.0x1.357]XiwLhO8FnROM2q2R1tcKSw==[/tex]
- 1
设随机变量 X服从二项分布 [tex=3.786x1.357]L4TgfyMuoYCq1SFUeY4IXQ==[/tex], 求 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布函数,并作出它的图像
- 2
消费[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]、[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]两种商品的效用函数为[tex=3.786x1.0]7vLcrYFX8oPLT+bKAixW8g==[/tex] ,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]、[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的价格均为4,消费者的收入为144,求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]价格上升为9,所带来的替代效应和收入效应。
- 3
设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从区间 [tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex] 上的均匀分布,已知 [tex=5.071x1.214]AkOROF5ie+tk11Qa7g1ldQ==[/tex], 且 [tex=15.0x1.357]GrfkPj3qzHWF2h7tfr1aU1PxhSegp7nDj3acrGEucKk=[/tex],求(1) [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的概率密度函数(2) [tex=5.929x1.357]Q6msPI0XKKFHcTfaSA+ztQ==[/tex]
- 4
设[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]服从参数为 1 的指数分布,[tex=2.286x1.0]9/9iwGqXp5QMYqkNTltYDNEowzysbRa2vywE4TxIMeI=[/tex],求[tex=2.214x1.357]ocoZdV18P73QTNWKFIScyg==[/tex].