举一反三
- 设事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]仅发生一个的概率为0.3,且[tex=8.286x1.286]5CXaGNwHzfS65Np3RfElh5jczgKXbIaLojYLdkR4Kug=[/tex],则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]至少有一个不发生的概率为[input=type:blank,size:4][/input]。
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵,若齐次线性方程组[tex=3.357x1.286]X2hN7n3UmL0lWQo53x55cw==[/tex]有非零解,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]必有一个特征值为[input=type:blank,size:6][/input] .
- 设事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]相互独立,事件[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]与[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]互不相容,事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]互不相容,且[tex=8.357x1.286]SF242+RDLgX4MNoLAJmzq7pQMvoyBkKdKERUoek8tCI=[/tex],[tex=4.857x1.286]sDWlco2se5NWtxnahxycow==[/tex]。则事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]、[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]、[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]中仅[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]发生或仅[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]不发生的概率为[input=type:blank,size:4][/input]。
- 从 52 张扑克牌中任取 4 张,试计算:① 4 张中有 1 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率;② 4 张中有 2 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率;③ 4 张中有 3 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率;④ 4 张中有 4 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率。
- 设[tex=4.786x1.286]0/tKJa7kw9AV/6EXw6GPgg==[/tex],[tex=4.857x1.286]HDjC0hQGgi8ffRTMUmD6uw==[/tex],[tex=6.429x1.286]bPlssJ/70bZzBXvqPuljYnKqpCcfswui4EpPQgDpQz4=[/tex],则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]至少发生一个的概率为[input=type:blank,size:4][/input]。
内容
- 0
设[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的各列元素之和都是1,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的一个特征值为[input=type:blank,size:6][/input] .
- 1
按两个相互独立的事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]都不发生的概率为[tex=1.5x1.286]WoOCrfncikmE9Haf/Lcrnw==[/tex],[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]发生[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]不发生的概率与[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]发生[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]不发生的概率相等,求[tex=2.214x1.286]GLXkIBaPZtKpCt6hUmnjSA==[/tex] .
- 2
设在一次试验中,事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生的概率为 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]. 现进行 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次独立试验,则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]至少发生一次的概率为[input=type:blank,size:6][/input],而事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 至多发生一次的概率为[input=type:blank,size:6][/input].
- 3
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是任意二事件,证明:若事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]相互独立而且不相容,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]中必有一个是0概率事件.
- 4
[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵,[tex=3.071x1.286]/hNJfmYOwPe2r7HJpMwPIg==[/tex]有非零解,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]必有一个特征值是[input=type:blank,size:4][/input]