若\(L\)为\({x^2} + {y^2} = 2x\)的上半圆从\((2,0)\)到\((0,0)\)的方向,则\(\int_L { { e^x}\sin ydx + {e^x}\cos ydy = } \) 。 ______
0
举一反三
- 已知\( y = {x^3}\cos 2x \),则\( y'' \)为( ). A: 0 B: \( 6x\cos 2x{\rm{ + }}12{x^2}\sin 2x - 4{x^3}\cos 2x \) C: \( 6x\cos 2x - 12{x^2}\sin 2x{\rm{ + }}4{x^3}\cos 2x \) D: \( 6x\cos 2x - 12{x^2}\sin 2x - 4{x^3}\cos 2x \)
- 曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$
- 8. 下列不等式正确的是 A: $0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ B: $0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$ C: $\int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ D: $\int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$
- 3. $(2x\cos y-{{y}^{2}}\sin x)dx+(2y\cos x-{{x}^{2}}\sin y)dy$的原函数是 ( ) A: ${{x}^{2}}\sin y-{{y}^{2}}\sin x+C$ B: ${{x}^{2}}\sin y+{{y}^{2}}\sin x+C$ C: ${{x}^{2}}\cos y-{{y}^{2}}\cos x+C$ D: ${{x}^{2}}\cos y+{{y}^{2}}\cos x+C$
- 计算\(\int_{\;L} {ydx + xdy} \),其中 \(L\)为圆周 \(x = R\cos t\), \(y = R\sin t\)上对应 \(t = 0\)到 \(t = {\pi \over 2}\)的一段弧。 A: -1 B: 1 C: 0 D: 2
内容
- 0
计算\(\int_L {2xydx} + {x^2}dy\),其中\(L\) 是抛物线\(y = {x^2}\) 上从点\((0,0)\) 到点\((1,1)\) 的一段弧。 A: 0 B: 2 C: 1 D: 4
- 1
下列方程中( )是微分方程。 A: \( x{y^3} + 2{y^2} + {x^2}y = 0 \) B: \( {y^2} + xy - y = 0 \) C: \( x + {y^2} = 0 \) D: \( dy + ydx = 0 \)
- 2
sin(nx)^2*cos(x)^2从0到π的积分是多少
- 3
已知\( y = {x^2} + 2x \),则\( y' \)为( ). A: \( 2x + 2 \) B: \( 2x \) C: \( 0 \) D: \( x \)
- 4
直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )。 A: x<-2 B: -2<x<-1 C: -2<x<0 D: -1<x<0 E: 以上答案均不正确