举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个反对称矩阵, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有一个 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 阶主子式 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 不等于零且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 所有包含 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 的 [tex=1.786x1.143]UaQxuhUKI4GVtPgR92aBsw==[/tex] 阶加边主子式都等于零, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个对称矩阵, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有一个 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 阶主子式 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 不等于零且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 所有包含 [tex=1.571x1.357]Q/GokBo2RLLYLkjQdcJvqg==[/tex] 的 [tex=1.786x1.143]0I+mivUTc61+gHYMZ4P6UA==[/tex]及 [tex=1.786x1.143]UaQxuhUKI4GVtPgR92aBsw==[/tex] 阶加边主子式都等于零, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实方阵, 已知 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值全是实数且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的一阶主子式 之和与二阶主子式之和都等于零. 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是幂零矩阵.
- 设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是域 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex] 上秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵.1) 证明 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有非零的 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 级主子式.2 ) 又若 [tex=2.286x1.0]nrDn1K3wfGPS5vJ5c5JkwTpRSi1lFeR+ayR8NA65ddw=[/tex],则有 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的任何两个非零主子式同号.
内容
- 0
求证: 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 存在一个 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 阶子式 [tex=1.429x1.357]LyfDtN6+R6bUYlGsfelPgA==[/tex] 不等于零, 而 [tex=1.429x1.357]LyfDtN6+R6bUYlGsfelPgA==[/tex]的所有 [tex=1.786x1.143]0I+mivUTc61+gHYMZ4P6UA==[/tex] 阶加边子式全等于零.
- 1
[tex=0.5x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 以任意一个 [tex=0.5x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维非零列向量为特征向量的充要条件是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是对角矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是数量矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是单位矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是零矩阵'], 'type': 102}
- 2
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称正定矩阵, 证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互相正交的特征向量[tex=6.857x1.5]1OLDM79a1WnqWkErUXr8P604kgpkEAoDOqD5+BNAsbem5zwUCkpRL26F98rz8e/f[/tex]关于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共轭.
- 3
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称阵, 求证:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的所有主子式全大于零, 特别, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的主对角线上的元素全大于零
- 4
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的伴随 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 也可对角化且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 可同时对角化.