举一反三
- 设 [tex=2.643x1.357]JzSsOLHw1BX893c+vpTwSw==[/tex] 服从区域 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 上的均匀分布,且由 [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 轴,[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 轴及直线 [tex=4.0x2.143]eDYt9PJGqR2b7FO8ygLoiw==[/tex] 所围成,试求:[tex=1.571x1.0]JUrGU6ftUjxQCIr6CyfDwQ==[/tex],[tex=1.714x1.0]oVray6uZ7+6o6FqRqYhIOg==[/tex]
- 设 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 服从在 [tex=0.786x1.0]XUo+oVq0EXNG7rY4rJKp8w==[/tex] 上的均匀分布,其中 [tex=0.786x1.0]XUo+oVq0EXNG7rY4rJKp8w==[/tex] 为 [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 轴、 [tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 轴及直线 [tex=4.429x1.214]EorcciRLdUFGjQtleN94eg==[/tex] 所围成的区域, 求[tex=5.929x1.357]6/xwoYqScvL+hwdTz+Xliw==[/tex] 的值。
- 求在 [tex=0.786x1.0]IcEjznW4B1Gh0c4+j1tgzg==[/tex] 上服从均匀分布的随机变量 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的密度函数及分布函数,其中 [tex=0.786x1.0]IcEjznW4B1Gh0c4+j1tgzg==[/tex] 为 [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 轴、[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 轴及直线 [tex=3.643x1.214]yXDSWbgQk9xG6JHAY6biNQ==[/tex] 围成的三角形区域。
- 设 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 相互独立且 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 的分布律如下,试写出[tex=2.643x1.357]JzSsOLHw1BX893c+vpTwSw==[/tex]的分布律[img=907x80]17897c11a296c50.png[/img]
- 设 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 服从在 [tex=0.786x1.0]XUo+oVq0EXNG7rY4rJKp8w==[/tex] 上的均匀分布,其中 [tex=0.786x1.0]XUo+oVq0EXNG7rY4rJKp8w==[/tex] 为 [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 轴、 [tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 轴及直线 [tex=4.429x1.214]EorcciRLdUFGjQtleN94eg==[/tex] 所围成的区域, 求 [tex=2.357x1.357]57DCzUieph2S0AM7NnAdtA==[/tex] 的值。
内容
- 0
设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.
- 1
设 [tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex] 是平面直角坐标系中由 [tex=1.857x1.0]kCYiW6QQC0U5Hqfo1w5wHA==[/tex] 和 [tex=2.286x1.429]uhgOg8UGt89GFMkyJwpgXA==[/tex] 所围成的区域,[tex=2.643x1.357]JzSsOLHw1BX893c+vpTwSw==[/tex] 在 [tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex] 上服从均匀分布,试求 [tex=2.643x1.357]JzSsOLHw1BX893c+vpTwSw==[/tex] 的分布密度。
- 2
已知股票[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和股票[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]完全负相关。假设[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]为投资在股票[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的份额,而[tex=2.643x1.357]EMC3vRapQhS2JLDh2OpVPQ==[/tex]为投资在股票[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]上的份额。股票[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和股票[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的标准差分别为0.40和0.20。如果股票[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与股票[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的某一投资组合的方差为0,那么[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]为多少?
- 3
设 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 服从区域 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 上的均匀分布,其中 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 由直线 [tex=4.929x1.143]y+d6dmvr4NYQAkfMGHjUnw==[/tex] 与 [tex=1.857x1.0]X7etWab1J10Xwqu65uIXXQ==[/tex] 所围成。(1)求 [tex=2.071x1.286]6js1OwTSM0ERpXO1jlRj/Q==[/tex] 的边缘密度函数(2)[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否相互独立? 为什么?
- 4
设 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 服从区域 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 上的均匀分布,其中 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 由直线 [tex=4.929x1.143]y+d6dmvr4NYQAkfMGHjUnw==[/tex] 与 [tex=1.857x1.0]X7etWab1J10Xwqu65uIXXQ==[/tex] 所围成。(1)写出 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合密度函数(2)求概率 [tex=5.5x1.357]qsEhC0SCUINZbPnvm8yVmw==[/tex]