举一反三
- 在[tex=5.429x1.357]RlDYBDYzlnKEOzd1Ql3pzQ==[/tex]中 求微分变换 [tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]的特征多项式.并证 明[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]在任何一组基下的矩阵都不可能是对角矩阵.
- 求复数域上线性空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的线性变换[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]的特征值与特征向量, 设[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一个基下的矩阵是:[tex=6.214x2.786]3BT1BgBZQ5uJXxD5dg+w29wlCih+1lhpjAuwkpfyi8StndXPsLnn4tlIVuXhjahBrIGFeDZN131CPy4AyBjcEA==[/tex].
- 设 [tex=4.643x1.0]A4jSygN0882R6SV3eve5dyhKA/5f6aU7CkpCJuZGXtlw94feNCK40XN+rRjedTwKiT6M+7G+X0+NO323Q0MGX66zshUAJc1cAnQFN9WrDFU=[/tex] 是四维线性空间 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 的一组基,已知线性变 换[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex] 在这组基下的矩阵为[tex=10.143x4.786]075gCzZzsMRb6HYXYk9X96ka3vrvpAflUM3U1ay2rhWeMSYxbzIA6i9pHOj+/jMgJ+B+LdRkrccbbNQF/J6EGVKcWj49gntQBbYc8e82Dzet9XQOVHfr2JFiMdTaNdYKC6AOvj05/eFigNzVPIzpVVvcd34oo5JxpLTixSWCM3A=[/tex]再[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]的核中选一组基,把它扩充成 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一组基,并求[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]在这组基下的矩阵
- 设[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]是线性空间 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换. 证明:[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]的特征值一定不为 0
- 设[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]是线性空间 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 上的线性变换,证明 [tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex] 的行列式为 零的充分必要条件是 [tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]以零作为一个特征值.
内容
- 0
证明:如果线性空间 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 的线性变换 [tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex] 以 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]中每个非零向 量作为它的特征向量,那么 [tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex] 是数乘变换
- 1
set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 2
求下列线性变换在所指定基下的矩阵:在空间[tex=2.214x1.357]RFwDoYxrXrc4aqxH0AQ83o9WXoksKVXERM/Il35Oy2U=[/tex]中,设变换[tex=0.786x1.0]3UKvB+w607mbn/eWBx9vkQ==[/tex] 为[tex=8.643x1.357]KPNcgolBTDI6KUqdO1HC8xpN2xwYmPHNg23udRzl2KA=[/tex]试求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在基[tex=18.571x2.357]47jSrsVFI3KBnyxUZLScwFZ1rBrdBlbRI3rSNCV8KDF2HheXvdJ6InueImPcvT1vLNI7X7Z76wFMg361L06xHqYlQCxiUn31W5zybOHz9/Y=[/tex]下的矩阵 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex];
- 3
求下列线性变换在所指定基下的矩阵:在空间[tex=1.929x1.929]5tYFD3FfWZ7ry90wyYisxw==[/tex]中,设变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为[tex=8.643x1.357]KPNcgolBTDI6KUqdO1HC8xpN2xwYmPHNg23udRzl2KA=[/tex].[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]在基[tex=21.643x2.429]+4R0U1Uo/vLwmyUPgCQpy5uEsXgBuO32SimbgZnQOtU26az+a343EClLRY6M9RAU3xfUBxOryDm1pp/KrSQ1ksojS4KeWdnE1IVEE7jStHOUJ22NoRAM2MupzH+EF+z2[/tex]下的矩阵;
- 4
>>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']