举一反三
- 设[tex=2.0x1.357]s5rkuaa09tHVOqNEBnxxWg==[/tex]中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次多项式[tex=15.429x1.5]07ax/Xs/01ngg5bIKaxR16ZB9VQJRAHO3jweza+gU/WFGfSrVZ+Ndv8oEublbYvrZslBu41jLcasUg94aKVAdA==[/tex]的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个复根是[tex=5.357x1.0]245yQ+A3qAPT6fE3Y1z7MeFE12g0v34VS+RR6Z+GHuk=[/tex],对于[tex=2.5x1.071]5kdrLd2nDHih1CL/jmGbuw==[/tex],求数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上以[tex=6.643x1.214]yylZOEIATVFuQzoL4OpAqpa0wMhDAYjaQRk9mH+I7GR32bx17NMNM0fNSwHtoeAH[/tex]为复根的多项式。
- 需要用多少字节来编码[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]位的数据,其中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]等于7
- 设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数, 域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的特征为零或与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素. 则多项式[tex=4.786x1.357]m/z0dX/5ln/ylMUosE7OkOmOMx769B2z4pSMWxLEeyk=[/tex]在[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]中的根集[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶循环群, 其中[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]是[tex=2.357x1.143]S+IT4HHTaRyh3BoxjagfjA==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的分裂域的任一扩域.[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的生成元称为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原单位根. 换言之, 当[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的特征为零或与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素, [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的某一扩域含有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原单位根.
- [tex=1.929x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次首 1 不可约多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]称为[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原多项式, 如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的某一根[tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]是域[tex=2.357x1.357]0VK3/N/fLOoUyml49ohHEw==[/tex]的乘法循环群的生成元. 证明[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中共有[tex=4.071x2.429]0drReSlpMjMXE1rfRani/DeJvia0KsjFAPcCA14ydQuvAviOTTpbJlfkinpauZHT[/tex]个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原多项式, 其中[tex=2.071x1.357]Q3CGpDoBA3UwvlngA8cIKQ==[/tex]是 Euler 函数 (即[tex=2.071x1.357]Q3CGpDoBA3UwvlngA8cIKQ==[/tex]是小于[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的正整数中与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素的正整数的个数).
- 证明:数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上与所有行列式为1的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵可交换的矩阵一定是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级数量矩阵.
内容
- 0
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对称矩阵,证明:如果[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上主对角元全为1的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级上三角矩阵,那么[tex=2.571x1.143]0fnjW85PDzMA1plt4TcKcg==[/tex]与[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]阶顺序主子式相等,[tex=5.857x1.214]I5SGjTr5mzU5Ceq/sb8fsMww7wbMal8t8RY5w2pUkfk=[/tex]。
- 1
证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,则存在唯一的整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使得[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是[tex=1.857x1.143]e5w+BNfKI9xFH5nCChNqEw==[/tex]和[tex=2.286x1.143]6W89R+WvL61VovDfCOzxwQ==[/tex]之和。
- 2
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上首项系数为1的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次多项式,[tex=2.643x1.071]eieXfa8dsTTkzaWNJxZYwQ==[/tex],[tex=7.143x1.357]iAbmr9EwK9FjgdhjFHSNFA==[/tex]。证明:[tex=7.857x1.286]KLYzldmaNv1QPnoOQXGFbdcKjr7e/IXIXWRg1t4aVV0=[/tex]。
- 3
证明:数域[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]上一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 次[tex=3.214x1.357]gJkFLWVH5zNk75r8/evhfA==[/tex]多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]能被它的导数f(x)整除的充要条件是[tex=7.214x1.357]lmeBkU8/ruK6t5RxRgcerg==[/tex],其中[tex=3.286x1.214]oeWZ4kdc5N+8h2+UwE9GFw==[/tex].
- 4
证明:数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上与所有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级可逆矩阵可交换的矩阵一定是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级数量矩阵.