• 2022-06-19
    试证下列函数在 [tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 平面上解析,并分别求出其导函数:[tex=13.857x1.357]z38MEoqhQ9mk3jioGlgfzlP6l3golc6ZVLNX0bRUJRStJQXDaHHXiP+ZQzsEKhMYkW08D1Ha4MocUTIkZJ2zLw==[/tex]
  • 证明:因为 [tex=17.357x1.357]rt/LJ+/OBI5VGHz0Wv0Q0Fl1TMI4WF1fYe80r7YM6NwhhTA6zSsCAAVpaBkNVqu1dGwKGwTfHUn/+DPmKMB4rQ==[/tex], 则[tex=28.286x1.286]pCP+9AzfN5J+L2foxhUp4JKxrDWZZvmt6lIbI9XkMgB83YqOUImNzm+isOgiAGH7cLzjqxM583WJCGOR+2Ex405JztEUqU5CUqZVWwBIvTCY0tnRwZaxn5GyAWzyz+Jr[/tex]故 [tex=5.0x1.071]EEo9WdfZQficfXePyuLMIFcdpOaDGYtFTbdOOAtMiyE=[/tex]在 [tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 平面上连续,且满足 [tex=2.857x1.143]67fqXk5t/Pez7LFAdXfGfdXlW573rXqsog4bKQ7TYg4=[/tex] 方程[tex=6.429x1.214]zt2Lh9wk6YzgQFDng8HoyzQe1NyW9gSKJbo5G8J17iQ=[/tex]所以, [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]在[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 平面上解析, 且[tex=5.786x1.429]sTw2BuVYpiUDgBqIy9y5kTodTvjBkRqo6YYRA/jVjfVJQx2f5tKhC5i9ER6a1HEB[/tex][tex=19.143x9.071]Ck4j1YFlvVH5wCAykOEMi1xM4pmAeXxFeDpuss1PW16jHR1rjhSFfcScenvKS2A4fpFWKleEr4ycfrCPpPRKXIgroUo4Lru4KYfayoTBnY7kuBH2fQHkmAPLxCYQgi39zmtHVuMxE3iP7TcUIYD/eVKE0i+4aHLOHqYpTxFZLemL/3a2+laOIJJ6QXVTLVdyuA/WNtJKyQG2DYIyWqa+FHWjClTqCkGgb0OgHsSOmvqW409ASnaB8frNAOdJ5nI8TfDhQejNViDSVIOYhuSoVAETNf3y8XjHeBIMmfQMyVTJBd+bb3So0J4zpKelrSBLSDu94v6nRNr9sjPIsICRvR4BI00kMJmuQ7NyG7HXbtVaLY2XBcMErLJjRSrWYg1yyJuY9A9wvhHRhr+sMMAJq9hkFp3EKpflXp+pcyfLhEZBQt+kTvKZuR0t0lQCzxj1ikF5KxqhQgL0jaFLRcgpnIfvkN63KDxfD+Wuvs2Zd0nNMFzhltG1aa9KK+SGU2NvXG0NJTLevQ3rsQzrO3UPTncLauYHOYyob4TmxML6jWjUR5/gTPLb9gEULJeKWJ8oSOWZgVMb+qoKS88VbpWtmw==[/tex]

    内容

    • 0

      试证:在扩充[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]平面上解析的函数[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]必为常数(刘维尔定理)。

    • 1

      set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}

    • 2

      试证:在扩充[tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex]平面上只有一个一阶极点的解析函数[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]必有如下形式:[tex=10.286x2.5]H+IABKXZLEfTzYYK2+Bztvp6D4vF0juJo8hUGr+kK90GWBwi6Mi3VugccWVhpmNq[/tex]。

    • 3

      如下函数的返回值是___________def test(): temp=[1,2,3,4,5,6,7,8,9,10] return [x for x in temp if x%3==2] A: [2, 5, 8] B: [1, 3, 6] C: [3, 6, 9] D: [1, 4, 7]

    • 4

      函数\(y = 2{x^{ - 3}}{\rm{ - }}3{x^2}\)的导数为( ). A: \( - 6{x^{ - 4}} - 6x\) B: \( - 6{x^{ - 4}} + 6x\) C: \( - 6{x^{ - 3}} - 6{x^3}\) D: \( - 6{x^{ - 3}} + 6{x^3}\)