举一反三
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是一个多项式,用[tex=1.857x1.429]idKr11bHOSzta0UYvTFwdw==[/tex]表示把[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的系数分别换成它们的共轭数后所得多项式。证明:(i) 若[tex=4.5x1.357]U6R4KZ/ZA1xG3kNTBBaoT+FoCalf1qdbw+cLi+CQZSk=[/tex],那么[tex=4.5x1.429]Y3ca/1c2Po5h46S8jpBzgIOUoIoXz6YHR/CCReJzAs0=[/tex];(ii) 若[tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex]是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.429]idKr11bHOSzta0UYvTFwdw==[/tex]的一个最大公因式,并且[tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex]的最高次项系数是[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex],那么[tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex]是一个实系数多项式。
- 求多项式[tex=1.929x1.357]qtItT2nSs9gJhyd/XUewoA==[/tex]与[tex=1.857x1.357]HPAY/8lZdPTeVaC829Iu0A==[/tex],使得[tex=10.857x1.357]goysNU0bxWSUXJzgE3jjR8RUz5lHAT4A9BUBlPX15Jc=[/tex],[tex=1.929x1.357]cY572O/iQb24RFJ/GJrTow==[/tex]是多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的最大公因式,[tex=9.857x1.5]9lBOqsVx8jRkhUTJDDYUuxpjmIhwV/CHtemDUucFZfc=[/tex],[tex=6.643x1.5]F5ZA02DDOySSAGfdYNNn1g==[/tex]。
- 求多项式[tex=1.929x1.357]qtItT2nSs9gJhyd/XUewoA==[/tex]与[tex=1.857x1.357]HPAY/8lZdPTeVaC829Iu0A==[/tex],使得[tex=10.857x1.357]goysNU0bxWSUXJzgE3jjR8RUz5lHAT4A9BUBlPX15Jc=[/tex],[tex=1.929x1.357]cY572O/iQb24RFJ/GJrTow==[/tex]是多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的最大公因式,[tex=11.571x1.5]/aSXGCwVlv2Cp56C/P2kFPuSRYF1mEWI14XublbdAB6qhIm+sV6/n5yiV1D+01hf[/tex],[tex=6.214x1.5]HmSEFmtll3Kr2APMHt7E/g==[/tex]。
- 证明: 在 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中, 如果 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的倍式和, 并且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一 个公因式, 则 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是实系数首一多项式且无实数根, 求证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以表示为两 个实系数多项式的平方和.
内容
- 0
求解以下递归方程:[tex=16.929x2.5]O9+lMnELfB6xYWO3aKNNV239oneN9/6uz4uvopl7x4Aph1/KUUoinx7g32+Mx2AsP5hooT1Vo9tueUBWQZPkwA0Kted7HyKQOSpxQDDbZuAUjRGe7VBIHm3z1Y85FMP4[/tex]假设其中: [tex=2.214x1.214]MRTVBrqWBP6t8xXh+ZuOyA==[/tex], [tex=1.929x1.357]cY572O/iQb24RFJ/GJrTow==[/tex]为“积性函数”, 即[tex=7.357x1.357]cSdIdA91L+NTmZ2PIcuoieioeK+Ubepe8uEyaAJFYoA=[/tex].
- 1
证明: 如果 [tex=8.714x1.357]q1zLG7InaoWF4DZWGqVkvpL1XoEKv/ZHCRM4RPRje54=[/tex] 且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 为 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个组合, 那么 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的一个最大公因式.
- 2
设非零的实系数多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]满足[tex=5.857x1.571]xuo/caF7g1JxzO9tAsH5V+Z5aGTPk3h4SrnQbNH+GYU=[/tex],求多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]。
- 3
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是整系数多项式, 既约分数 [tex=0.786x2.357]TrkDKyZk9yHqx4n40IA11Q==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根, 求证: [tex=9.857x1.357]THMGr+8k++VybNgooTFrA6hP64l9N5j5XhhG5gB1cWk=[/tex] 是一个整系数多项式.
- 4
设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=1.857x1.357]VmBbVJMXt2JXSfX9IcTKCw==[/tex]中的首一多项式,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的一个有理根,证明[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是整数。