• 2022-06-19
    设函数u1=u1(x,y,z)与u2=u2(x,y,z)均满足拉普拉斯方程△u=0.试证明函数v=u1(x,y,z)+(x2+y2+z2)u2(x,y,z)满足方程△(△v)=0.
  • 求导得类似得因而有由已知条件得△u1=0,△u2=0,从而有求二阶偏导数并把三式相加得并把它写成且利用△u2=0便得到△(△v)=0.

    内容

    • 0

      4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$

    • 1

      设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)

    • 2

      已知u(1)=1,u"(1)=2,v(1)=1,v"(1)=-1,若函数y=u(x)v(x),则y"(1)等于______。 A: -1 B: 1 C: -2 D: 2

    • 3

      公式("x) ($y)(P(x,z)→Q(y))→S(x,y)中的约束变元进行换名,正确的是 A: ("x) ($y) (P(x,u)→Q(y))→S(x,y) B: ("x) ($v)(P(u,z)→Q(v))→S(u,v) C: ("u) ($v) (P(u,z)→Q(v))→S(x,y) D: ("u) ($v)(P(u,t)→Q(v))→S(u,v)

    • 4

      设z=xy+x^2F(u),u=y/x,F(u)可导,证明x(偏z/偏x)+y(偏z/偏y)=2z