举一反三
- 设由[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中取出 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个可测子集[tex=6.286x1.214]RwHNhKnsJE7/U9e6rjTMWNwjbalxGWzDRU455ijC9QA=[/tex], 假定[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中任一点至少属于这 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个集中 的 [tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex]个,试证必有一集,它的测度大于或等于[tex=1.857x1.357]fQeXgfKDPec+KYD4YDQ2SQ==[/tex]
- 将[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 个编号为1 至[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的球放入[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个编号为1 至[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 的盒子中,每个盒子只能放一个球,记[tex=18.429x2.429]mM1DVNhuu1ZJsgdDJkNvlwxaN7R5hIKvZ5UbBzEZmfp2UhP3Zq351VRzWEMRdm3uinSrcc7p8+nzmPsSIG54E2V/P5fGE3U4D9iuhcuHZRc9WTbUtJcvnTtZEQLtkmkk[/tex]且[tex=5.357x3.286]H17WeEMdvGiKmUaBv3UHlr+w908WeOAYwlNd4OXIYos=[/tex] 试证明:[tex=8.214x2.429]eSRIeOCe8BWNAn2F+8quczsQqvTV6vlqRvgkDNDaN3kDa1RFoMqnHRGBmlu3Vu2Cz2uspWlfB+TZynrVoyPcTXHUNzZUJpt0HOhK1iuQXI0=[/tex]
- 设 [tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 是 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 中的不可测集,证明:存在[tex=5.071x1.214]x7RJXeG5RWlGo3aCH+iNwBEsg7jxayJ2LH5ClUh1LLc=[/tex], 使得对 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 中任一满足 [tex=4.214x1.357]MzuaJa9dpBgNKe6rkz5BRCUs8/gIHKZHD+w2OpkO4g8=[/tex] 的可测集 [tex=3.714x1.214]gWlcE/WOfI8ydfnJJSiIjw==[/tex] 均是不可测的.
- [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]与对角矩阵相似的充要条件是 未知类型:{'options': ['[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个互不相同的特征值', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个互不相同的特征向量', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个线性无关的特征向量', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个两两正交的特征向量'], 'type': 102}
- 试求定义在 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 上的函数,它是 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 与 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 之间的一一对应,但在 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 的任一子区间上都不是单调函数.
内容
- 0
具有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点的非同构的简单图有多少个?其中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是4
- 1
6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 2
设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数。证明:在任意一组[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个连续的正整数中恰好有1个被[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]整除。
- 3
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中的不可测集,证明存在[tex=4.143x1.071]foEe0bX/HiE5m+5XK4O1oQ==[/tex],使得对[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中任一满足[tex=3.429x1.143]3kInYXL7KglKF9opo6+E208LHQuHr81UP2RJmXlIZps=[/tex]的可测集[tex=3.786x1.214]1C8YWn1GyFaWZo6LcXsKvA==[/tex]均是不可测集。(提示:用反证法,设[tex=4.0x2.357]Ya0P7AeSIwzljpdSih4Ls2nlNcBmDaCgFicJZSszDfs=[/tex],存在可测集[tex=4.5x1.357]sSgG4FGVFXyPdkfA4yXe2sjMn3B8lX7bp3uvQG8TiOo=[/tex],使[tex=5.714x2.357]O8ndCxR7Z2RPuyH2D96wFJcTyQ+TtihbzQhEiyyp/ws=[/tex],而[tex=3.071x1.214]dhCrjd06nS60zmWa17VLcw==[/tex]可测,利用[tex=21.143x3.357]heZMQ3r0U860u5hsqLoCG6wX7RUqzTZHFi1QAtEA7XFbmIW0PHaNKdvVnO/dqmkMqLHnWJiPMapduqdyNAdQvhwvZi0/JEqI6HPrT/5tx8dKU3EwA2BPpsJoOlX5H+jZ2yhbCwUeRHKfimY+XdyP8HDHBP2I409gFzikJoxFkob7c465dt0fLHUJ1CHgHbdW[/tex]推出[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可测)
- 4
设 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 中可测集,若 [tex=3.714x1.357]TiA+F1K0JpZViol/PQ2VPQ==[/tex], 证明对任意可测集 [tex=12.0x1.357]xt5BtlToPhMVxaAkOIiRiYNWFLmhzOYRvqvJ/03XRcRPNrBo5JxoQIF4x8BT7Tly[/tex].