• 2022-06-09
    [tex=6.5x1.286]cnq/OqgsuLVpplAADbAHh6NjpytnkFrmVIAfKaH57nk=[/tex]
  • 积分一次得[tex=10.429x2.143]bcKRo5UyZjUMWV0PYPhK9z4jlzGWeTlKaaTLhGC4636JHUkKGpdRVrtaZoYUxwGw[/tex],再积分一次[tex=5.143x1.286]Ei2PZQl92La73hUrygebc2dy83NxCrWti2tsT46guVM=[/tex][tex=7.143x2.143]gQYNS43Pj7reCV1LRfhBG7isilj4gzd8s2vRRT9mREB+JWfuF/hT2fmoYCz3f7yK[/tex],[tex=10.0x2.143]1iDLvgeBk9J/krDggXDHGw4qOd/2if9jVILgbMXHHge/S2cMLzcid5be7Evx0HcSOqNfH9nCHsbTWwGEGIEZMg==[/tex][tex=4.714x1.286]qHsAwLRbUAyZEKkF+wAOpVVrIA3T01TuqyFX3Q2NbMo=[/tex],[tex=10.143x2.143]qz7nVtH0r/G/Z23d11HId4PNv7YyxhPsDfL3ji5EvnozuHamnfrM3cLlamR0hHDuttV1FrYQ4YaUTzhy3e7mIQ==[/tex][tex=8.286x2.0]txEj9IgCdRCciBOpxsGCGFXeeFCMEQYjbLzcSj05WeV+yOsjMKndJVRlsROa12lI[/tex],所以[tex=6.857x2.143]qz7nVtH0r/G/Z23d11HId7p7qFjEIsgFGD48IaFAVoXHj1o5S9UvSZsQN689YV6C[/tex][tex=9.5x1.286]Hp9UeP4C/G7YWxssdZIxwbdLfyUnYCoOB0rEEyhcgmxKCNr7TwKQy8uWgxvM9DhS[/tex]。

    内容

    • 0

      求下列方程的解[tex=6.5x1.286]5N4fE/+TRNVJnPQE2QZxnk9iqFBLSlGE+zjEKu5ltDhpHQ0DE9o+Y7sb6GiXaalh[/tex]

    • 1

      试求方程的通解 [tex=6.5x1.286]uDURn6KTVSzuxHB9PQPJUlsBLm5s+mvpb/VuFS4eQq0GqQQD3iCNO3lkED6NAgnlicxTlgVvSXDtg8Xrro6phA==[/tex]

    • 2

      设三阶矩阵[tex=2.0x1.286]cdFQTIcX/k6W15SnnVIOSQ==[/tex]满足[tex=6.5x1.286]fKMuxXvMmkhZ6KBFJApU0RzCv0uzUPjL4nc3K7Aig7k=[/tex],证明:[tex=3.214x1.286]CxRh2MuWfyX9bh9PvBg47Q==[/tex]可逆 .

    • 3

      [tex=30.286x1.286]Ra24cNxHQ7Yav4G7aBhNUGNp82cifv65jseJqUgiLLrgS6OMv67X8zYCOqA6oZ1XuQAnLizeNZotHz9nVtpV3lSkDGHqNq0a9HlGRUvwLsha3AIkm8iwqhkNgqPuJp5pP8F6uBaETs/6Uzcil2W1xikN0u+KKXIGg7eAff/fL+c=[/tex][tex=6.5x1.286]9eYi8mPcgBFNIAji/buMZztKOuKR3dcbb5tmyOBqk/4=[/tex][img=291x130]179a6386254924c.png[/img]

    • 4

      求下列曲线所围成的闭区域[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]的面积:(2)[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]是由曲线[tex=6.5x1.286]+x2sbDsFrpX+hnnKRiwxvy5/mmhNhZ6peIkW6qeDu3Y=[/tex],[tex=6.5x1.286]W196opqhPCmiHDW18Dp1yLWm8Qh7CMjzaJJC4AQH2AA=[/tex]所围成的第Ⅰ象限部分的闭区域。