举一反三
- 证明下列等式:[tex=5.357x1.286]kLSeWsJBebAVjrHuXDaYDA==[/tex][tex=6.5x1.286]WIFM6wCRnz+2Cqiu+jehGw==[/tex].
- 求函数 [tex=6.5x1.286]singEXYm+rpRlMVHGXZ6F2QrFqtfKkacNFqdyqE9ihY=[/tex] 的微分.
- 求微分方程[tex=6.5x1.286]upqC2BUtUv0lwZqEwo4GhzPN1TfU7+VS6hlrs3LSs0Y=[/tex]的通解。
- [tex=6.5x1.286]HgvRjc8OayBTMZOd/vnm8bLs+E1qLoWDhUsP9QJ/Cck=[/tex]甲基[tex=2.071x1.143]d7MuXStu6Co/YXv1wHgW8Q==[/tex]己烯[br][/br]
- 把抛物线[tex=3.857x1.286]6Ukrpt8KK27902/BhoLIpmLwtm+vNoiqBYa9ya2PeAY=[/tex]及直线[tex=6.5x1.286]v96cVO/vN8TOnG6sstlXr8Vp0z7CCoasMBDnY6Wo/YhM2Sq+l0lt3Xx0F5N1XzwP[/tex]所围成的图形绕x轴旋转,计算所得旋转体的体积。
内容
- 0
求下列方程的解[tex=6.5x1.286]5N4fE/+TRNVJnPQE2QZxnk9iqFBLSlGE+zjEKu5ltDhpHQ0DE9o+Y7sb6GiXaalh[/tex]
- 1
试求方程的通解 [tex=6.5x1.286]uDURn6KTVSzuxHB9PQPJUlsBLm5s+mvpb/VuFS4eQq0GqQQD3iCNO3lkED6NAgnlicxTlgVvSXDtg8Xrro6phA==[/tex]
- 2
设三阶矩阵[tex=2.0x1.286]cdFQTIcX/k6W15SnnVIOSQ==[/tex]满足[tex=6.5x1.286]fKMuxXvMmkhZ6KBFJApU0RzCv0uzUPjL4nc3K7Aig7k=[/tex],证明:[tex=3.214x1.286]CxRh2MuWfyX9bh9PvBg47Q==[/tex]可逆 .
- 3
[tex=30.286x1.286]Ra24cNxHQ7Yav4G7aBhNUGNp82cifv65jseJqUgiLLrgS6OMv67X8zYCOqA6oZ1XuQAnLizeNZotHz9nVtpV3lSkDGHqNq0a9HlGRUvwLsha3AIkm8iwqhkNgqPuJp5pP8F6uBaETs/6Uzcil2W1xikN0u+KKXIGg7eAff/fL+c=[/tex][tex=6.5x1.286]9eYi8mPcgBFNIAji/buMZztKOuKR3dcbb5tmyOBqk/4=[/tex][img=291x130]179a6386254924c.png[/img]
- 4
求下列曲线所围成的闭区域[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]的面积:(2)[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]是由曲线[tex=6.5x1.286]+x2sbDsFrpX+hnnKRiwxvy5/mmhNhZ6peIkW6qeDu3Y=[/tex],[tex=6.5x1.286]W196opqhPCmiHDW18Dp1yLWm8Qh7CMjzaJJC4AQH2AA=[/tex]所围成的第Ⅰ象限部分的闭区域。