举一反三
- 求[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]设[tex=8.286x1.571]wrNlYn7v6ki6TqnvrqlHCbx85uFETipJsQf5uj2dsKXPbBS1Alp4qtkvBbKe46Jx[/tex]
- 求[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]设[tex=11.5x1.357]ft7fx4w3YIBrVD4dVGAy7oyiKQfffkf5hmV2VWaAago=[/tex]
- 作下列三角函数的图像:[br][/br] [tex=3.643x1.143]nbj8OAk0u55huNw/szx6cA==[/tex]
- 求[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]设[tex=4.286x1.357]teToWjHCAiqPZX/PwQUtNg==[/tex]
- 设 [tex=7.929x1.357]CYK6PStivPpSbSvS+Yl+cdMiVHsd+EMj5hIFdMhzDrs=[/tex]二阶可导,求[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]
内容
- 0
求[tex=3.0x1.5]Iac8O7jX9A2W5QqSmLU8Fg==[/tex]的高阶函数[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]
- 1
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为三阶可微函数,求[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]及[tex=1.143x1.357]eE9dXkpN2effVrNkAbXJmBWTvFxIdNVkiZ0bLYJb+fU=[/tex],设:[tex=4.286x1.357]BJMhsnWWy+b17IpjqvqyPw==[/tex]
- 2
求下面函数的高阶导数.[tex=3.643x1.214]6v5S7oPnSz7KTMaUE7vxXQ==[/tex],求 [tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex].
- 3
设[tex=3.071x1.214]MBM6FkRKhubflZJqDSdnSQ==[/tex], 求[tex=1.0x1.357]rjzw0bBUODiY66l+Mq83xDvCIhYz9DqYe2O7d9F77+o=[/tex]
- 4
以变量 x和y的逐次微分来表示函数[tex=3.143x1.357]Eg6rSgUNTUffRvxyTlFbYQ==[/tex]的导数[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]及[tex=1.143x1.357]eE9dXkpN2effVrNkAbXJmBWTvFxIdNVkiZ0bLYJb+fU=[/tex]”,但不假定工为自变量.