• 2022-06-08
    求[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]设[tex=3.643x1.143]nbj8OAk0u55huNw/szx6cA==[/tex]
  • 解 [tex=19.0x2.786]Tz+l/ydZ2QxTEWs4jWoCzknoeZg2t3cZO2miDfspUKMxqwlgpTyuheD6+tfnPVK2Pru/9XoUGIEI4zIhDqLFBttIbf2AJXSmySiRYgM1DEZCBgPumhHY9jonS8qKYcTzzT3tEHB+oQeCMaj9YJ1EtsYssF+CimvLST6j0bBN8KrRbzEtbazfMfB4ZaVbJZ0N[/tex]为整数)

    内容

    • 0

      求[tex=3.0x1.5]Iac8O7jX9A2W5QqSmLU8Fg==[/tex]的高阶函数[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]

    • 1

      设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为三阶可微函数,求[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]及[tex=1.143x1.357]eE9dXkpN2effVrNkAbXJmBWTvFxIdNVkiZ0bLYJb+fU=[/tex],设:[tex=4.286x1.357]BJMhsnWWy+b17IpjqvqyPw==[/tex]

    • 2

      求下面函数的高阶导数.[tex=3.643x1.214]6v5S7oPnSz7KTMaUE7vxXQ==[/tex],求 [tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex].

    • 3

      设[tex=3.071x1.214]MBM6FkRKhubflZJqDSdnSQ==[/tex], 求[tex=1.0x1.357]rjzw0bBUODiY66l+Mq83xDvCIhYz9DqYe2O7d9F77+o=[/tex]

    • 4

      以变量 x和y的逐次微分来表示函数[tex=3.143x1.357]Eg6rSgUNTUffRvxyTlFbYQ==[/tex]的导数[tex=1.0x1.357]eE9dXkpN2effVrNkAbXJmGIp9WKb7xaCkkBPHXfHmGo=[/tex]及[tex=1.143x1.357]eE9dXkpN2effVrNkAbXJmBWTvFxIdNVkiZ0bLYJb+fU=[/tex]”,但不假定工为自变量.