举一反三
- 设总体[tex=6.143x1.571]QBZUOQUmBWvo/FHw3V9n1EfoF7ukqDAh1PCxMrhfxfR6KOz4XNLRy4mOeXEGIESt[/tex],参数[tex=1.0x1.214]+33urkkz3/Nyr4sGrqM3/w==[/tex]已知,[tex=0.643x1.0]i247B8HtDhwV3KyhJOdFGA==[/tex][tex=6.857x1.357]7k/meS3yLCfnBvKXk3XZcFBWOrT1elqGaRLYOmaUXkA=[/tex]未知,[tex=6.071x1.214]6m6IpLK9nxKlloS9uQjB0qJni044ihmKs30/YJo0lk0=[/tex]是来自[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]一个样本值。求[tex=0.643x1.0]hK6dRoCn+OGpoJ7dSqNW4g==[/tex]的最大似然估计值。
- 设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率密度为[tex=11.786x2.357]eLD1HVCESEL2gz+7T09qlEfO2xNhQP1Sll0/ItRljX15guGlC951Seebt+2t3fo2MZMYNULaNLwkaHAronS+HhC2DHh2hibrbMThrVZDVZg=[/tex]为总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,其样本方差为[tex=1.071x1.214]i5X1X5E7qL58XB/6KQ47DQ==[/tex],则[tex=2.643x1.214]7uZncL+wDfjqPyzkaRzKHw==[/tex]?
- 设总体样本[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]分布密度为[tex=13.786x2.429]j5agDdJkFTcU3oAEr7zMVYAjPcbxs/IMeWGBZRqrAAp5nM80HBliI2FsMIJFuxPTtJXiDCDbIuQQVc1CkS4r+k1ApRdAmckch0yVBoazhVU=[/tex][tex=8.714x1.357]QvdrmMEkEkXBcM7p9FuvTRREbj6qCffrqKI1v5nuZxJ1HbRT2CuEuk4k8nMm2n492d+m1RhEZcnJodizbZOaxg==[/tex]是来自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的容量为 7 的样本,试求样本中位数[tex=1.786x1.357]4S5BGyfqec2GPYM2CZmcJw==[/tex]小于[tex=3.5x1.429]KulqzWgx+8tvN9KMDVeBfupGSVB8uby5QzRJHDbPphI=[/tex]的概率.
- 设总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从[tex=2.214x1.357]edGNSsITty4G+sxahA7W4w==[/tex]上的均匀分布, [tex=11.143x1.5]4IEHF18kszRIMkRIDP6I2T/GXskbOD9qT4qp2GPUU9c=[/tex]是总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的一个样本观测值, (1) 试用矩估计法求总体均值、总体方差及参数 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]的估计值; (2) 试用极大似然估计法求总体均值、总体方差及参数[tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]的估计值.
- 设总体[tex=8.214x1.571]QBZUOQUmBWvo/FHw3V9n1EfoF7ukqDAh1PCxMrhfxfQm9ZA4WToBYecXmNKbs90UUlss5/CxuwPocsEsMeVXQA==[/tex]已知,[tex=7.929x1.571]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6hXRhAveaWGnFS5lHBuxYl[/tex]是来自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的一个样本,试求统计量[tex=6.786x3.286]3rIyQnlxJJ39Ewa433DS9iDdL2nns1UvND979NmR0aHN9KOxMMwDYfzfAl2YXIkY[/tex]的分布密度.
内容
- 0
设总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从指数分布[tex=5.143x1.357]W/urJWv3LDWJ3OSkU+hPsARZJP32u/XmVmVzAA6jcxQ=[/tex] 是容量为 2 的样本,求 [tex=4.071x1.286]4w1vXgDbMwi+DkQe7M1JCFadvINj0ONdflkgLfe0oak=[/tex] 的概率密度.
- 1
已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布,且[tex=8.286x1.357]LDgHReRZVA5QzpAkFsm37LX8N2D5xQRN5085qpjSnhc=[/tex], 则[tex=2.429x1.357]mcPoV0l2+P69G4jqQuIxgA==[/tex] A: 1 B: 1/2 C: 1/3 D: 1/4
- 2
设[tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的期望[tex=0.643x1.0]hK6dRoCn+OGpoJ7dSqNW4g==[/tex] 的最大似然估计量.假设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布.
- 3
(1)设总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 具有方差 [tex=3.286x1.5]wN+yYpIXtP7UxcNLxt9gwjejctD7KjrPJ1LKF/ByhfQ=[/tex],总体 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 具有方差 [tex=3.286x1.5]cdb0wKNCLAXjCIVdVILO6nOU4ifYH/dKBXobpKBzclk=[/tex], 两总体的均值相等. 分别自这两个总体中取容量均为 400 的样本,设两样本独立,分别记样本均值为 [tex=2.357x1.286]ny5NEyX8wbCGETTBYtw6S0iQgoeYZY7gmfKbKWvWM9Y=[/tex] 试利用切比雪夫不等式估计 [tex=0.571x1.0]E3ICGbJWMD1XtKoJZJuGrg==[/tex], 使得 [tex=9.643x1.429]j0uOhDP1JTcUkjBM8gyyDTPLLNgJy9H54dco6pS+u+GrEycZN2MVk7l8a3dQvoJO[/tex](2)设在(1)中总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 均为正态变量,求 [tex=0.571x1.0]E3ICGbJWMD1XtKoJZJuGrg==[/tex].
- 4
设 [tex=6.071x1.214]6m6IpLK9nxKlloS9uQjB0qJni044ihmKs30/YJo0lk0=[/tex] 是来自两点分布总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的样本,[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布为:[tex=10.0x1.357]1D18VLvMeG0y48kk+342PX3X1cVt/wdubNm4e/fPnqo=[/tex],[tex=8.429x1.357]7W4fbrlEhytacNuAvXpmeg==[/tex],求样本 [tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 的分布律