• 2022-06-07
    直径为[tex=3.5x1.0]lzFhS5+IcrQ/NIAEEsAe7CB+FvSpsR8X+qeJhp3HWSo=[/tex],密度为[tex=4.786x1.5]42UFJ8Yi3YIzxGeU8a9i92sI9TTE7JGyOrJTMo+zcQg5zL9g1DjUiaafktUcqIkr[/tex]的球形颗粒在[tex=2.143x1.071]8LIofHN9OwL+t1Gb0rx/gjfLy7Qi9Fyr5VCI3TePFlU=[/tex]水中自由沉降,试计算颗粒由静止状态开始至速度达到[tex=1.857x1.143]tnsbeZpQzrh/W5C2M9k/gg==[/tex]沉降速度所需的时间和沉降的距离。
  • 解:根据牛顿第二定律有[tex=15.071x5.214]a0s3MH7cLIdmiBRR0YN06ywyvt5W2af6cJJk4Gmgok9oDXufmfkUoJeHcSrpovQynaZLsFQxjxoQNGx7iE3JoZVdHGb0xwexyMiGKQwNxGheyUgkv5hL6RHIW0B19aYN25VtdBa+wZw5n+C/cWrUHuczas4o8ASkC/afWmrQCaOl29H7Mesi8VNvjmJmgH5okfzYZ+MGA8kuJjAjugDunInv6tXJJayHMcJAMfmLfuM=[/tex]设处于斯托克斯区所以[tex=9.286x2.786]CvyIkmwiTv5AMf6X0zLqUzmwFu7woX/ZRb9xNIYLKGFbCdTTkVAUmlv9VbRZaVxabHt+muxZTmMrap9gJLcj7KBxU7dpvZryI+B6lmQvF2+c/u6UevYO0FRYG3hE+Zz6a/YVygrxkNJmixtr5qQE4Q==[/tex]积分得[tex=22.571x3.0]rxvVWLkz8MTDX8SNi+7yF+J8B33m1OZ+Go9E4YLpeeNrz9Rk/0dF9Xer1cu1068ahQR2JtFwAUkYuOyayGCjFxk5hlcSnp7jUwgA9Yjrk1+uQJ5VDWpRCOWLoNpasIKBaMxZn46qJjf9/Ke0LLttH9zK1TraBqHgMLQhYD1Kt0uxAKhLAuuf2cPC+UXsiRq4qul+vIag3P/fDIMx7MfXq0zzGda6r35ZGEoj1+UD/UpUhL0L7CRIdLoMMoAqwak3[/tex]查[tex=2.143x1.071]8LIofHN9OwL+t1Gb0rx/gjfLy7Qi9Fyr5VCI3TePFlU=[/tex]水,[tex=14.857x1.5]ZTH8Y9I3Q+wHHhbTmAtVR1kJ2XkRHGD6sXPdpwRMnq2pRZgm9lSyMMaS3Pay/eryCwBMgMOICfTthSaFCN3kraVkTEXwgM5WumwD11QvfZrlsO7eRoOrNRIZ44/y4Iu7[/tex]。设处于斯托克斯区,则[tex=29.5x3.0]oMDXdd+R/vQHTUplzkJP9cAylruqZlwZ2Frqu1uWWYALdPE7bha5OV90bzwO2zRj3+qzmp1umYtdn6n5WCriE8OC6rQQTItBhF9+BIk9tJxRcQh8SzK6vZDdVXMDmQqqetxD0/eplLxtOWj4M7JNJb4Aw2Es2nRb4a5KxpgG+cX0rE4yp9TVb+HMKiEWtE8Mrrd4wyasXU38qhFlXxcYe0XbXrcDLJjAs18o0GnBMhpoN01BMTpwQoRwsi2N14cLkVPQKQaeGxmP6rzIW9jgaw==[/tex]验证[tex=22.786x2.714]YACsrGbQwhs57XkLQeN8E1i5dFrX9BanFaMRnzxrQYMSAQKYAf6b0FFfkScQ8O855k/GAgD/5RncWs5Q05VD2PFNIq+1JPGMuQ522DHL1sVzzg6KPaHzDvUyZXvPeEd17TPKmzm0M41bYB2Iog+3EfEo8uE4tBr4+l7dyUAAWjc=[/tex][tex=21.857x2.857]4J+sb7mnDfLm4wFy7IFzCnqpc6mSSkVpZssGnvXU7qY6EghmsCuo1G0xFYbPjAtFhXfCRUIlXrhE9q1i66FqhlDMBAJFcvfdZBDEmf0OESbk/MHsHs2YhmvFoxYsKp7WHBp1PuldkHYDQTmiUAfYsD5m2Pe5Tfs6eD6lbCoQjzNy5FYXIDqoysQvCJQFi9+i[/tex]由积分式得[tex=9.214x1.857]UADoR246VezzWmNquVqYMjbO+gTX70pOtc7G4ukpMa+pIVn2c428YjDVYebZ0KlVme4ArFL9x9LJ/BHzUVJxUty8icGlcnxdKdmqJetH8Og=[/tex][tex=2.786x2.429]0NOOCR6rtAquCR05VA4t6rg2y+HCx8YzBoz4KYNTI5ZpLhY2tQgK6E5pXokHtrqF[/tex]所以[tex=32.857x8.5]ifE9NWj3X6IpRVSt3T5ITm3l06kl7e2CO0XXsRk47kzkdC4tH7kCF449VxKWaRdSfc5pbcNk7hCZlONuaXAgSMru+Ovng9cHU5CAqOr8sPTUrlZyXiTbOGzm1APXT9mnsVrjZmEAvJ1OrSK2cg9yifejNWIBi3X1AClOGt+hPTk6mJRaYBejp688AfLUhTiLyWFhhCGK16tGpOMMHxR6pWPjt0sig4f091jCvgnCY1dEh/dmQDlP/tuPNMGE2ASX3f7B89tgiihiiUF8rYWqawi62/228kEKPTA5rLkoGQYLMKAhfRdEtCHFRZtcXrgbJdEG8ZDCP79ZrDQUYWfXY67UApPHrkuSGYfNmxuVLunCS4WL/j5LgOkyqTsR4NLj/OozYt3eGGbk2px1bKVdJHSDzEnJOpDimiIAo6aEBOtETg0YIx6zs4x5gZ6AV2s436I+B3iUhVTa6eDqvFVcUuJEhK7UBZX1ne7Jz6uuEAyy5CxXR6DGlKIq/cWdgD47IQQWhO8KOw8NjgEnt+SDzIj145qU1OJq+4RVBdG0JqBRpnDbQiBC1wObczClFwsKnhEFuk+gCQcfUxZhAXxs/8zSYQd7vDg6y2Cm1QGB5YAfjJQwCFMdsbUtb2EVQzGjGZUQ23uakP5AY8ZK4QY+/6s2PXiq6jmILQz/0GsGKarmu5lncBRjbo1neWXgAg5B4Qq5v+5smBCAKFV0tcrpHu+gF3lZT1yT2jL/1IzBwm7shwFo4iPn9R+7q/iQHDQy0SYlW9ELIcIKI9TZCjNq/qBunxRc+4jVi2nIO35nU74=[/tex]

    内容

    • 0

      【单选题】请用地点定桩法在4分钟内记忆数字。 4 0 1 3 6 3 5 1 9 8 8 9 7 2 9 3 0 9 5 3 1 7 7 5 2 3 3 0 5 0 1 4 1 3 8 3 5 7 9 7 (5.0分) A. 已背 B. 未背

    • 1

      set1 = {x for x in range(10) if x%2!=0} print(set1) 以上代码的运行结果为? A: {1, 3, 5, 7, 9} B: {1, 3, 5, 7} C: {3, 5, 7, 9} D: {3, 5, 7}

    • 2

      A=[1 2 3 4 5 6 7 8 9]A(5)=[]A=1 4 7 5 8 3 6 9

    • 3

      set1 = {x for x in range(10) if x%2!=0} set1.remove(1) print(set1) 以上代码的运行结果为? A: {1, 3, 5, 7, 9} B: {1, 3, 5, 7} C: {3, 5, 7, 9} D: {3, 5, 7}

    • 4

      以下程序段实现的输出是()。for(i=0;i<;=9;i++)s[i]=i;for(i=9;i>;=0;i--)printf("%2d",s[i]);[/i][/i] A: 9 7 5 3 1 B: 1 3 5 7 9 C: 9 8 7 6 5 4 3 2 1 0 D: 0 1 2 3 4 5 6 7 8 9