• 2022-06-16 问题

    设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)

    设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)

  • 2021-04-14 问题

    设u=cos(xy),则du=( ).? cos(xy)(ydx+xdy)|-sin(xy)(ydx+xdy)|sin(xy)(ydx+xdy)|-cos(xy)(ydx+xdy)

    设u=cos(xy),则du=( ).? cos(xy)(ydx+xdy)|-sin(xy)(ydx+xdy)|sin(xy)(ydx+xdy)|-cos(xy)(ydx+xdy)

  • 2022-06-05 问题

    设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)

    设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)

  • 2021-04-14 问题

    <img src="http://edu-image.nosdn.127.net/E6A0628104FCB0F521FBF2AAAC7F1968.png?imageView&thumbnail=890x0&quality=100" style="width: 558px; height: 33px;" />? syms xy=log(1/x*x+exp(x))+sin(1-x^2)dy/dx=diff(y,x)|syms xy=log(1/x/x+exp(x))+sin(1-x^2)dydx=diff(y,x)|syms xy=log(1/x/x+exp(x))+sin(1-x)^2dydx=diff(y,x)|syms xy=log(1/x/x+exp^x)+sin(1-x^2)dydx=diff(y,x)

    <img src="http://edu-image.nosdn.127.net/E6A0628104FCB0F521FBF2AAAC7F1968.png?imageView&thumbnail=890x0&quality=100" style="width: 558px; height: 33px;" />? syms xy=log(1/x*x+exp(x))+sin(1-x^2)dy/dx=diff(y,x)|syms xy=log(1/x/x+exp(x))+sin(1-x^2)dydx=diff(y,x)|syms xy=log(1/x/x+exp(x))+sin(1-x)^2dydx=diff(y,x)|syms xy=log(1/x/x+exp^x)+sin(1-x^2)dydx=diff(y,x)

  • 2021-04-14 问题

    【单选题】求函数y=sin(xy)+x/5的极小值,初始点为(1,1)的命令为( )。 A. FindMinimum[Sin[x*y]+x/5,{x,1},{y,1}] B. FindMinimum[sin[xy]+x/5,{x,1},{y,1}] C. FindMaximum[Sin[x*y]+x/5,{x,1},{y,1}] D. Findminimum[Sin[x*y]+x/5,

    【单选题】求函数y=sin(xy)+x/5的极小值,初始点为(1,1)的命令为( )。 A. FindMinimum[Sin[x*y]+x/5,{x,1},{y,1}] B. FindMinimum[sin[xy]+x/5,{x,1},{y,1}] C. FindMaximum[Sin[x*y]+x/5,{x,1},{y,1}] D. Findminimum[Sin[x*y]+x/5,

  • 2022-06-09 问题

    设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z''_{xy}} = \)______ 。

    设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z''_{xy}} = \)______ 。

  • 2022-06-18 问题

    曲线sin(xy)+ln(y-x)=x在点(0,1)处的切线方程是____。

    曲线sin(xy)+ln(y-x)=x在点(0,1)处的切线方程是____。

  • 2021-04-14 问题

    z= x 2 y 2 +sin(xy),则z对y的偏导为()。

    z= x 2 y 2 +sin(xy),则z对y的偏导为()。

  • 2022-07-24 问题

    画出函数f(x,y)=sin(xy)在区域[img=138x23]1803072d305f022.png[/img]上的去网格线、去边界框三维图形。 A: Plot3D[Sin(x y),{x,-5,5},{y,-3,3}, Mesh®None, Boxed®False] B: Plot3D[Sin[xy],{x,-5,5},{y,-3,3}, Mesh®None] C: Plot3D[Sin[x y],{x,-5,5},{y,-3,3},Boxed®False, Mesh®None] D: Plot3D[Sin[x y],{x,-5,5},{y,-3,3},Boxed®False]

    画出函数f(x,y)=sin(xy)在区域[img=138x23]1803072d305f022.png[/img]上的去网格线、去边界框三维图形。 A: Plot3D[Sin(x y),{x,-5,5},{y,-3,3}, Mesh®None, Boxed®False] B: Plot3D[Sin[xy],{x,-5,5},{y,-3,3}, Mesh®None] C: Plot3D[Sin[x y],{x,-5,5},{y,-3,3},Boxed®False, Mesh®None] D: Plot3D[Sin[x y],{x,-5,5},{y,-3,3},Boxed®False]

  • 2022-06-12 问题

    设随机变量服θ从&#91;-π,π&#93;上的均匀分布,令X=sinθ,Y=cosθ,则 (1) E(X)=1. (2)E(XY)=2. (3)ρXY=3.

    设随机变量服θ从&#91;-π,π&#93;上的均匀分布,令X=sinθ,Y=cosθ,则 (1) E(X)=1. (2)E(XY)=2. (3)ρXY=3.

  • 1 2 3 4 5 6 7 8 9 10