f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
已知函数f(x)是奇函数,且f(2)=1,则[f(-2)]³=( ) A: 1 B: 8 C: -1 D: -8
已知函数f(x)是奇函数,且f(2)=1,则[f(-2)]³=( ) A: 1 B: 8 C: -1 D: -8
求xf(x2)?f′(x2)dx等于() A: (1/2)f(x2) B: (1/4)f(x2) C: (1/8)f(x2) D: 1/4[f(x2)]2
求xf(x2)?f′(x2)dx等于() A: (1/2)f(x2) B: (1/4)f(x2) C: (1/8)f(x2) D: 1/4[f(x2)]2
照相机光圈从大到小排列顺序为(<br/>)。 A: f/1、f/2、f/4、f/3 B: f/2、f/4、f/8、f/16 C: f/4、f/3、f/2、f/1 D: f/16、f/8、f/4、f/2
照相机光圈从大到小排列顺序为(<br/>)。 A: f/1、f/2、f/4、f/3 B: f/2、f/4、f/8、f/16 C: f/4、f/3、f/2、f/1 D: f/16、f/8、f/4、f/2
已知$f(x),\ g(x)$互为反函数,且$f(1)=2,\ {g}'(2)=2,\ {g}''(2)=1$,则${f}''(1)=$( )。 A: $1$ B: $\frac{1}{2}$ C: $-\frac{1}{4}$ D: $-\frac{1}{8}$
已知$f(x),\ g(x)$互为反函数,且$f(1)=2,\ {g}'(2)=2,\ {g}''(2)=1$,则${f}''(1)=$( )。 A: $1$ B: $\frac{1}{2}$ C: $-\frac{1}{4}$ D: $-\frac{1}{8}$
(1)5 7 9 11() () ()()(2)26 23 20 17()() 8()(3)1 2 4 7 11() () 29(4)7 3 8 3 9 3()()(5)1 1 2 3 5 8()()
(1)5 7 9 11() () ()()(2)26 23 20 17()() 8()(3)1 2 4 7 11() () 29(4)7 3 8 3 9 3()()(5)1 1 2 3 5 8()()
background:url(2、png),url(1、jpg),url(3、png),url(4、jpg);},表示哪张图片处在最上层() A: 2、png B: 1、jpg C: 3、png D: 4、jpg
background:url(2、png),url(1、jpg),url(3、png),url(4、jpg);},表示哪张图片处在最上层() A: 2、png B: 1、jpg C: 3、png D: 4、jpg
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
在命令窗口中输入下列命令: A: (12+4)*8 B: 9+4*5 C: 10%6 D: 运行结果为(). E: 128 29 4 F: 44 29 4 G: 128 29 6 H: 44 29 2
在命令窗口中输入下列命令: A: (12+4)*8 B: 9+4*5 C: 10%6 D: 运行结果为(). E: 128 29 4 F: 44 29 4 G: 128 29 6 H: 44 29 2
8、求积公式ò2 f (x)dx » 1 f (0) + 4 f (1) + 1 f (2) 的代数0 3 3 3精确度为( )。 A: 1 B: 2 C: 3 D: 4
8、求积公式ò2 f (x)dx » 1 f (0) + 4 f (1) + 1 f (2) 的代数0 3 3 3精确度为( )。 A: 1 B: 2 C: 3 D: 4
