举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是有限维线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的线性变换,[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的子空间,[tex=1.714x1.0]xIy1AT19mrzIEEo5ZeH+0A==[/tex]表示由[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]中向量的像组成的子空间,证明:[tex=18.0x1.571]lBXXZYMMrxJ2+/5vAU9EvUMjF2EjPNhXdhxshHJhWR5XKEUfpmEWqqipid115QO+Se1ZwcFo29oVwLnqDA4U/LY08VLkqkIskbWQTSVYUsK7yqTiCnOU9+rFk9A8bWyIReqN+vhVvIdX9yigoWZPqA==[/tex]
- 2. 设[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]是数域[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]上维线性空间,证明:由[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]的全体变换组成的线性空间是[tex=1.0x1.143]8bfC0zh8xjaCXrxoE5J87w==[/tex]维的.
- 设[tex=5.286x1.214]quOPtqfuRj8ozrQ+uV1MYv8JMGscBLYNG65/rG13OxY=[/tex]是线性空间[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]的 [tex=0.5x0.786]91OkLAPJN0/k5IKcIh4ulA==[/tex]个非平凡的子空间,证明[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]中至少有一向量[tex=0.643x0.786]jdK/fyT0DcQyP00+kAkt9w==[/tex]不属于[tex=5.286x1.214]quOPtqfuRj8ozrQ+uV1MYv8JMGscBLYNG65/rG13OxY=[/tex] 中的任何一个。
- [tex=0.786x1.0]3akNjptD8YqOes80TdtIxQ==[/tex]是数域[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]上[tex=0.643x0.786]1p65fe6CUUvpZ1I+2NvzNQ==[/tex]维线性空间[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]的一个线性变换,证明: 如果[tex=0.786x1.0]3akNjptD8YqOes80TdtIxQ==[/tex]在任意一组基下的矩阵都 相同,那么是数乘变换.
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
内容
- 0
设[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间,且 [tex=6.571x1.071]ZyqBa4JfWRPKusGwA3PAKqa8sjPrakad+dZGuQBTVus=[/tex].证明:[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中有不止一个余子空间。
- 1
设[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]是数域[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维线性空间,证明:由[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的全体线性变换组成的线性空间是[tex=1.0x1.214]Z5GZ0zNulrjGJKMFBGia4w==[/tex] 维的
- 2
令[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一些线性变换所成的集合。[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]如果在[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换之下不变,那么就说 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。说[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是不可约的,如果[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中没有非平凡的不变子空间。设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换,它与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换可交换。证明,[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换。 [ 提示 : 令 [tex=5.0x1.357]o2+7Gdi3IvIUF7x5ByZZytJ/TK5JsUQ7dq1ESJYAz0s=[/tex],证明[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。
- 3
设 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的线性映射. 证明: [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 在 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 下的象是 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的子空间.
- 4
设[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的有限维线性空间,[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的一个线性变换,[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间,用[tex=2.643x1.214]KdJTfdOLEBWMXQir5AfhBQ==[/tex]表示[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]下的原象集,证明:[tex=2.643x1.214]KdJTfdOLEBWMXQir5AfhBQ==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间,且[tex=15.571x1.571]lBXXZYMMrxJ2+/5vAU9EvVvBGnLtY5JG8CbyUBVipe1uKDCQ1/KMuX64J9SLCi3ar2m76lz6zTaMR/0PayL319rvQLU4zhEdMizyHv9JVIUABc0jzkHxvW8wRmhsuQQnu66lpQQHQ5Y6rNUSTKc/IJw3GVC2rz/DOYqBVzfdYTs77YU3Muuc0/toyWs+9rVf2Yiw28jepiPWOuG3qlOl0Q==[/tex]。