若f(x)对一切x1,x2,满足f(x1+x2)=f(x1)+f(x2),且f(x)在x=0处连续,证明:f(x)在任意点连续
函数连续的定义是:设函数y=f(x)在点x0的某个邻域内有定义.如果当自变量Δx趋向于0时·相应的函数改变量Δy也趋向于0,则称函数y=f(x)在点x0处连续.已知函数在x=0处连续,那么就有lim(a→0)(f(0+a)-f(0))=lim(a→0...
举一反三
- 设f(x)在(-∞,+∞)内有定义,f(x)在点x=0处连续,且对一切实数x1,x2有f(x1+x2)=f(x1)+f(x2),试证f(x)在(-∞,+∞)内处处连续。
- 设f(x)对一切x1,x2满足f(x1+x2)=f(x1)+f(x2),f(x)在x=0连续.设x0≠0为任意实数,则 A: limf(x)不存在. B: limf(x)存在,但f(x)在x0不连续. C: f(x)在x0连续. D: f(x)在x0的连续性不确定.
- 若X~N(μ,σ2),F(x1<X≤x2)=F(x1)-F(x2)。
- 若函数f(x)在开区间(a,b)内可导,且对任意两点x1,x2∈(a,b),恒有|f(x1)-f(x2)|≤(x2-x1)2,则必有()。 A: f’(x)≠0 B: f’(x)=x C: f(x)=x D: f(x)=C(常数)
- 如果一个函数f(x)满足(1)定义域为R;(2)任意x1,x2∈R,若x1+x2=0,则f(x1)+f(x2)=0;(3)任意x∈R,若t>0,f(x+t)>f(x).则f(x)可以是( ) A: y=-x B: y=3x C: y=x3 D: y=log3x
内容
- 0
若随机变量的分布函数为F(x),下列一定正确的是: A: P(X=x)=F(x)-F(x-0) B: P(x1<X≤x2)=F(x2)-F(x1) C: P(x1≤X≤x2)=F(x2)-F(x1) D: P(x1≤X<x2)=F(x2)-F(x1)
- 1
设f(x)满足f(x+y)=f(x)+f(y),且f(x)在x=0连续,证明f(x)在任意点x处连续。
- 2
1.设$f(x)$在区间$I$内连续且$f(x)\ne 0$,若${{F}_{1}}(x)$,${{F}_{2}}(x)$是$f(x)$的两个原函数,则在区间$I$内( ). A: ${{F}_{2}}(x)\equiv {{F}_{1}}(x)$ B: ${{F}_{1}}(x)\equiv C{{F}_{2}}(x)$ C: ${{F}_{1}}(x)+{{F}_{2}}(x)\equiv C$ D: ${{F}_{2}}(x)-{{F}_{1}}(x)\equiv C$
- 3
f(x)在x=0处连续,当x→0时f(x^2)/x^2=1,则f(0)=?
- 4
假设F(x)是随机变量X的分布函数,则不能有结论( )。 A: 若F(a)=0,则对任意X≤a有F(x)=0 B: 若F(a)=1,则对任意X≥a有F(x)=1 C: 若F(a)=1/2,则Ρ{X≤a}=1/2 D: 若F(a)=1/2,则Ρ{X≥a}=1/2