设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上二阶可导, 且 [tex=6.5x1.429]SWlnDAiPeKEmHI3SHQdWY9tptQK94nJZAaDQI06BWu5ZKWHW5m9eogzgaP3SJzpW[/tex] 证明在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内至少存在一点 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex], 使得 [tex=11.643x3.214]k5WmVyEs7pZLED18JtYsULpl/YKIsIjWZ4QazPNVO6dRejHRezceUPE/LK/p11Zx//Tg451abktf8KqUoc10ldr9AKqiyldmiauS4PHGL4A=[/tex]
举一反三
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,证明:在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少存在一点[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex],使[tex=11.429x2.5]WOqEVrpuCOha2ZBQjNNPrAVxQjjfA1h4tb1zjguDu2gGIMJX1FDyEvF1edf6o7UBVNxanJs2u11gkxisMYf5sA==[/tex].
- 如果函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,且. [tex=7.571x1.357]zDPaXSeRwJZk/wlUh9MLrzCmroyCXS4cnIDl99GLNPg=[/tex], 证明在[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少有一 点[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex], 使[tex=3.214x1.357]tOwUB5yj9zk+uGlGMUF/3A==[/tex]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上可导, [tex=5.857x1.357]/v/rbm8y94xQjBrlnxRxnA==[/tex] 又[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续. 证明 : 一定至少存在[tex=3.143x1.357]3v9HBq0lFtIDOP11f7lbPg==[/tex]使得[tex=6.5x1.429]aWJWVBG3St35JwVMiGniOlnSiyAS3oZDWEyWQ5Lx8fx4MchmEpw2xhyFVGP0Nayc[/tex]
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=5.571x1.357]fZPOLhn8pxWflc83qanxJA==[/tex] . 证明:至少存在一点[tex=3.143x1.357]htJfTm2Yr41vXjV0YrMmqA==[/tex],使得[tex=4.571x1.429]aWJWVBG3St35JwVMiGniOunNpdqLAPh8XZTCEzjqC9s=[/tex] .
- 设函数 [tex=4.143x1.357]9L2r5tlh3JJ32yY4a6m3XQ==[/tex] 在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内可导,且[tex=9.143x1.357]p0jYoZ6T7qInCtut2iIuHX5myqBPRs+h8AYMTMMgcIs=[/tex], 试证明在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内至少有一点 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex], 使[tex=4.786x1.429]HS+F+eNaDRr1POIyr3c2HKYWj1N2HA2Fn6wO8sofYoY=[/tex]