1/(1+x)在x<1时其麦克劳林级数计算到n次项近似值的误差
举一反三
- 1/(1+x)在x<1时其麦克劳林级数是
- 函数$\sin^2 x$的麦克劳林级数展开式中$x^2$项的系数为 A: $-2$ B: $-1$ C: $0$ D: $1$
- \( {1 \over {1 + x}} \)的麦克劳林公式为( ). A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \)
- \( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
- 解不等式(1+x)(1-|x|)>0的值为()。 A: x<1且x≠-1 B: x<1且x≠-2 C: x<1且x≠-3 D: x<1