设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个整环, 试明:[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]中首项系数为 1 的多项式都能分解成一些既约元的乘积.注 首项系数为 1 的零次多项式就是 1 , 不是既约元, 不能分解成一些既约元的乘积. 所以本题应改为 : 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个整环, 试明: [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]中首项系数为 1 的次数大于零的多项式都能分解成一些既约元的的乘积.
举一反三
- 证明定理:设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个有单位元的环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的一个未定元.(1) [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的零元 0 就是[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]的零元 (即零多项式);(2) [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 是有单位元的环,且 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的单位元就是 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位元;(3) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是无零因子环, 则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是无零因子环, 且 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位就是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的单位;(4) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是交换环,则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是交换环;
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是交换整环,[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的分式域,[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一元多项式环,证 明[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上的一元多项式环且[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]与[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]有相同的分式域。
- 假定 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是模 7 的剩余类环,在 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 里把乘积[tex=13.5x1.571]1mozSZPmTDk0iZAfoGbSXnOelqTN0/dkYhjcU65OdFp1ann7b44m9v7d3WfJanWB51HbTxs3hwJeYJ5JgYjybafXVKfcHeBaMrNZWSFEF0c=[/tex]计算出来.
- 设[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]是唯一析因环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的分式域,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]中的首一多项式,又[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]是[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]中的首一多项式且[tex=4.5x1.357]tBZYcFY3CZI2ZZwP4Yrihw==[/tex],证明[tex=5.0x1.357]S4Nx9kL7+wdxiJdQrftO5w==[/tex] 。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是交换整环,但不是域,证明[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]不是主理想整环。