举一反三
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex] 均为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵,[tex=1.143x1.071]F0wJ6Hm8K7uRqU9zt3sS4A==[/tex],[tex=1.214x1.071]2SgXqFosW7dDc1CXsDGa7g==[/tex]为其伴随矩阵,证[tex=5.786x1.357]saQtjj9KgT6g9O2bf0d85iVvaQT4TtKM2BWMpR37/hI=[/tex].
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]均为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,则 [tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]合同的充要条件是( ),且说明理由. 未知类型:{'options': ['[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]均为可逆矩阵', '[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]有相同的秩', '[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]有相同的正惯性指数,相同的负惯性指数', '[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]有相同的特征多项式'], 'type': 102}
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]均为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,证明:[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]与[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]相似[tex=2.071x1.0]bMRrINhuwlMbjrHDeWypokpo0JQSnc3jAYoFoO0siCE=[/tex] , [tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]有相同的特征多项式.
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]为两事件,[tex=4.286x1.357]f2/QUECS2Xh01+rxCnKQrw==[/tex], [tex=4.286x1.357]E9G2+TtFKT3LPAmUm/aNIQ==[/tex], [tex=5.0x1.357]r3cOlHX0y2q0HwG0hFr1kQ==[/tex], 求:(1)[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]发生但[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]不发生的概率;(2)[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]都不发生的概率;(3)至少有一个事件不发生的概率.
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,则必有( ). 未知类型:{'options': ['[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex] ,[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]同时可逆或同时不可逆', '[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]\xa0,[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]有相同的特征向量', '[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]\xa0,[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]均与同一个对角矩阵相似', '矩阵[tex=2.857x1.143]/UA42ZQAkdOSMsPYm49V9g==[/tex]与[tex=2.857x1.143]eHxzvUi5brRRI6HgtmatpA==[/tex]相等'], 'type': 102}
内容
- 0
证明:如果[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]都是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对称矩阵,则[tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex]是对称矩阵的充分必要条件是[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]与[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]是可交换的。
- 1
设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,且[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]可逆,证明:[tex=1.571x1.0]ZT2ndRlmVScNtr8tRaWqog==[/tex]与[tex=1.571x1.0]39kvwgjRy4Zccv3OOZwTRg==[/tex]相似。
- 2
对于任意集合[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]和[tex=0.714x1.0]zAR8JLTji7MW5PnI4azq+Q==[/tex],证明:(1)[tex=14.143x1.357]uAeG91s9m4NSC42yY9fLtgH8zZxbT9SviE5OU2V8EOP4Ae2Bmdf3Yvmhg7ySJAK2[/tex];(2)[tex=14.143x1.357]dBSbzHFC87FT4ie284DjFEge1MAlA6AyuwqQlloZzvlSOt6HH4MpOtyDMAmafe6r[/tex]。
- 3
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为阶矩阵,[tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex]为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵,证明:[tex=12.143x4.5]9v4ak5prH0Q6BbqemWvBfoWrDR0F9IqkrexiZtBfHLCiuDhClSxCnaZ8HecEUWGznWxWNdfKvqOfSz4tcOb2JvuC2/f0gyZtOLJWrH2lLMOAX8NhgEmWJ3jqE6CC29macAHi1u1FphHRkrGEjVf+/w==[/tex]
- 4
设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,且[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]可逆,证明:对[tex=2.929x1.143]AmqCZ+JM84UP7Y7cPUJ8Og==[/tex]矩阵[tex=3.143x1.357]QwtfWVl7eiOoByiQqwqfmg==[/tex]施行初等行变换,当把矩阵[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]变为单位矩阵[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]时, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]即变为[tex=2.5x1.214]Yj3Oklhr35bcgLY0ugNnQA==[/tex]。
