证明: 如果矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]相似, 则它们的伴随矩阵 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 与 [tex=1.214x1.071]c21K3QE6FatLrRZ0T+/ezg==[/tex]也相似.
举一反三
- 证明相似矩阵的性质: 如果矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 相似,则 [tex=4.786x1.357]Z8TST0vjBIxBdTDVvUjlAsxaKeSF/G2jfEaa+VDopZ8=[/tex]
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵为[tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex],若矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]可逆,证明[tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex]也可逆,并求 [tex=2.857x1.571]hsYux8/o9R1M3QARVAWWJ40YE37QVAxGrOToUmC+3h4=[/tex].
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为阶矩阵,[tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex]为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵,证明:[tex=12.143x4.5]9v4ak5prH0Q6BbqemWvBfoWrDR0F9IqkrexiZtBfHLCiuDhClSxCnaZ8HecEUWGznWxWNdfKvqOfSz4tcOb2JvuC2/f0gyZtOLJWrH2lLMOAX8NhgEmWJ3jqE6CC29macAHi1u1FphHRkrGEjVf+/w==[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的伴随 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 也可对角化且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 可同时对角化.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵, [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 是其伴随矩阵, 则下列结论错误的是 未知类型:{'options': ['若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是可逆矩阵, 则 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 也是可逆矩阵', '若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是不可逆矩阵, 则 [tex=1.143x1.071]DFelGZAPNOqMgdbfKVoEHA==[/tex] 也是不可逆矩阵', '若 [tex=3.571x1.357]BIh93n4rr/VbrKyEAPPe8rDj7DFYI+OK8rT/Ls1y1eU=[/tex], 则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是可逆矩阵', '[tex=4.571x1.357]cnY8hKVKlPTpxyphVsUxyKhjkG54udEhsO0bBHAuhUM=[/tex]'], 'type': 102}