• 2022-05-31
    定义下式为符号集大小为K的离散平稳信源的符号熵;[tex=18.143x1.357]ttWmeJ0n+ybVcSqG4ZbA3SJLN6ZNHGdcMsmUr2CGEO0POInyX+7KZrCmrIR8uUTfcpO7WB9SqzSqVQjlWSDplPS6zmW8qVGMjyBnFb1PgfQLSfwppb75603kCM4eBRt6[/tex]证明[tex=3.214x1.357]Ul8l0nTDCQKoFyS80gz1fg==[/tex]不随[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]的增加而增加
  • 证明根据熵的不增原理,有[tex=38.214x6.429]Z8r8owbx7HS1/tZ3ZCHcKWgHpTHKB1Mv1VxFNC3XRjAh1szAqSTC9/99vqVuUj7JILKgCYPzREkEL+fAOLtiBK8r+X8K+MBU4wUW4UxkEUXLxTVuFtgBIqmyMBnt20EMR95DwfrwnQMg6IZ2hFNHkiwBlcI4jqbOupN3wFBI94xVvc6DSwtIMyc3pKAQNUNao8DDSmJEIW2DhYfYHEpOdOYMoMPck5n8TUWl3NIycrNMViJnWNhlSGyELRdh4L35NTitKTiIajeQaA6obv0xiNe0+Uam96bskzk+RgtSz7r6BVKEsDKFZuEaS7C/kWTDhZ4J9b2nCaQRNseP8kKAdsETj49mGRyAnSYp1a8Ito/bPZwFKcCw8LFWZPkitBQ4jkE6hIjnKUnvfeZTZmXEUk7vG6jWpP7WQU27CuZMRJ/sNkjURnrOsKwvF0kr9ZyuDrrv0SvYqCblUxDn08THbm8994SGQR9xXuTsmaTEWa1Ir6HhOQKcIBpV8dzJXDM7CqAm4YOp0UGm5uiJxcEJrErH7HdbFJPtlFrV9wf8h23hsSq5xDjI5/hOTpAUEplTWU3TnKQEt6Pc7WlQ5ywAdDRFRO84CXTeB1AzrJNgQI0UplAPb5gKimBXmUes6MvTBx4wzLv1byLXRdSHo0Xt/05sD7PwzyjqWWeD2gQ6ARQmHZT2p7nJyaVhF9ZfK+97pAsd3dbILDUQVW286z7AyZZkBu16VEkvc1m4w4Cx917xD2bJPGkPCmBxGotgFow81I4S316UKDcn4c3qjLUGPxWy9ZHsZHz7MSHWE34G/pQ=[/tex]其中[tex=1.5x1.286]v8lAwxTXOPGbm0rrXp4wnQ==[/tex]平稳性[tex=1.357x1.286]hEJHCvlApi2Msvlup34xSg==[/tex]熵的不增原理:所以,有[tex=28.286x2.786]NvSTN135b6Fl+ZmqkoTc7Fuj8vX5AaP2IfIIaCY6/LozDPLU3fIsEGMIwo4kxJznyHLRM0CsITkk9Y1KLf7j+6nkq0O2S3YoegTgxUYU9EUfAWbIbK3oXgElvO2zZ6EPl/6vUCF+5yDsiO5D05Izkcf23areTEse1A0/Q1laMSWkCRCSaKZnfpsX2S3nOn1e002bM1Bax16uBDgsad6+iCy5RGPyif38+u6LF5cO5yA7Qt6OH4telIwP1o+ftjONhjqqhyaMVGvTO69pXsLDjcugqLgszkD0VB4j8invk7r/bRP33bBvlamc+mNcbM+kVQD4sUay4bT/3jE0G5Rd99enmIWmzSs+NE5pRBU8peIQhFJSrtKaaw0xYiGozGR+[/tex][tex=32.643x5.643]HhCwMOnVbAgF4h4auQ76bgpcU5PWFhNKeFQne2coLDCRNaJ1j1YfBHUxePkr/1RAgKNBV51wycGCfNEUkyz+zmHHIAECmkmp/q9FOCAdIQuQ42Icf7L/R/L3/PnrzQjVp99fvg9tht3tOlRR0ork5oAkpgwwy3euOjw+eIyQdZis4q6PQUNMbKiXgJOSdK8E2RTRLO3Myoif3CKhPCOtcvfeU+3KGxBQebiEKIVOeHoVtqp7IeBUXDFLcHm319p0l6aadjrgyLKo5Eo+sgTTZVJ9/VNsJTrb2pBjahS1M5ocrGEPymjHbJXnbYYlM2KsBl1zk2nbA2TRvmuEtScBO7kr72hDWwu+1TfoUsRsscXNWb/JAvVrrvAcpLRui8VvwxxSzfpcHYufmZA+vSne2Cd4cU/MDgAZ8ak1ajJHQk0b5l3iNdc0UkBx91AkgxOdwQ6bqX41PP+wlgX6RPFPBMNSYxpuaNKKmPa1p0WU3cSwk+f3K5fOqokbaNaPw8Gh+Hxs925yUEMI6GJogcN3JKXJxYi/kYjws5E8lRE2HYJFEE/6rSM7J7TkHPeiST9EXPqc7yOy9Yv9dE1wgo5nMZjB+beI9twaV0TF16pOK4RD7AY0xhIz6eD5Fttd7oQz37YsQL3V0pzFS7AJY79pIw==[/tex]原命题得证。

    内容

    • 0

      6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。

    • 1

      list(range(-1,10,2)) A: [0, 2, 4, 6, 8, 10] B: [-1, 1, 3, 5, 7, 9] C: [0, 2, 4, 6, 8]

    • 2

      当执行下面的语句定义一维数组a后,此数组的所有元素为 ( ) inta[10]; A.a[1],a[2],a[3],a[4],a[5],a[6],a[8],a[9],a[10],a[10] B.a[0],a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9] C.a[0],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9],a[10] D.a[1],a[2],a [3],a[4],a [5],a [9],a [7],a [8],a [9],a [10],a [11]

    • 3

      设DES加密算法中的一个S盒为: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 15 12 8 2 4 9 1 7 5 11 A: 1010 B: 0001 C: 1011 D: 0111

    • 4

      set1 = {x for x in range(10) if x%2==0} print(set1) 以上代码的运行结果为? A: {0, 2, 4, 6} B: {2, 4, 6, 8} C: {0, 2, 4, 6, 8} D: {4, 6, 8}