举一反三
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上一有限函数,那么下列两件事等价:(1)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上满足 Lipschitz 条件,(2)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上某个有界可积函数的不定积分.
- 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上有界.
- 函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续是在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可导的
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续, 且 [tex=7.357x1.357]uDZognCYe2c/zRuokcdW2HBjR3D/FFsKyFLSnT+mmSc=[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒正或恒负.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]uQo0Qwms4Bgi6pleNWBbfw==[/tex] 上可积,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上定义, 且在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 中除了有限个点之外,都有 [tex=4.5x1.357]g5nLB1f2rSsNKL5qY072JQ==[/tex] 证明 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上也可积, 并且有[tex=10.286x2.857]NY7oodrirBbiImTnksGISeP5InpehyYXak28A033MDhXvTwEN9Hk0ozWBWZ0gGlFgyOpyoftjjpQw938qmEWdA==[/tex].[br][/br]
内容
- 0
证明: 若闭区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的单调有界函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 能取到 [tex=1.857x1.357]+oWS0hM0HogLU9xbRXppWQ==[/tex] 和 [tex=1.714x1.357]6GTYhzmnTgdXYb7xz1/D/Q==[/tex] 之间的一切值,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的连续函数.
- 1
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上可积, 且在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上满足 [tex=6.5x1.357]UXaRUg7BF9zV7ojhkK/1rwe6GMJy7HOsBoWZi4KGW8U=[/tex]([tex=0.929x0.786]o6X45tpG/qifjWfiPhyOpQ==[/tex] 为常数 ), 证明 [tex=2.143x2.643]9b0SZgsi+TL9knQy95iF8392AEBaIU8lF6yXDNjaOsY=[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上也可积.
- 2
下列命题中正确的是. 未知类型:{'options': ['若\xa0[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在\xa0[tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 中有界, 则\xa0[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在\xa0[tex=2.0x1.357]uQo0Qwms4Bgi6pleNWBbfw==[/tex] 上连续.', '若\xa0[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在\xa0[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上有最大值、最小值,则\xa0[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在\xa0[tex=2.0x1.357]uQo0Qwms4Bgi6pleNWBbfw==[/tex] 上连续.', '若\xa0[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在\xa0[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上无界,则\xa0[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在\xa0[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上不连续.', '若\xa0[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在\xa0[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内连续,则\xa0[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在\xa0[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内有最大值、最小值.'], 'type': 102}
- 3
设 [tex=5.857x1.357]gfTyftYv3vx5MA+ZCm0ioTLxy7oVEpeq/Rn9ytEwYJE=[/tex] 证明:若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒不为零,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上恒正(或恒负)。
- 4
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒为常数的充要条件是:对于任何 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的连续函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 且 [tex=6.0x2.857]yINAHOXKHG7ruMsL/vkvBEYj6HewtfoBmgOlOkEMcJy2RxHEgnyJ8vpzCdsSLoLZ[/tex], 总有[tex=8.143x2.857]7gcaGQKU+5R98xRnVkbRSL4g1A5RDN/b3vHA6tm2w1heBr45R4BeYC3/TzlbrSns[/tex]