• 2022-06-03
    一导体球半径为 [tex=1.143x1.214]WB5oUFU97imVoOqmwwnMtg==[/tex],外罟一半径为[tex=1.143x1.214]akFdfHl3PdcRxRUQleHWdA==[/tex]的同心薄导体球壳,外球壳所带总电荷为 Q,而内球的电势为[tex=1.0x1.214]01DdVOqrf+V9MNc+YXferA==[/tex]。求此系统的电势和电场的分布。[img=214x187]17e15605ab8eb75.png[/img]
  • 根据静电平衡时电荷的分布,可知电场分布呈球对称,取同心球面为高斯面,由高斯定理[tex=13.5x2.643]83Oz9uy1z43QeXKs7O6MHjLa++ms3tCGFrEh27Ulj/OK3UYxe168vR9lHPaFdrf2STkeilEL1+3wZxDt1aN4ZIHQ6ULP0qJG/cOTTOu2DTk=[/tex],根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为[tex=2.357x1.214]w5oa5P798c8MJgSVDZA2uQ==[/tex]时,[tex=3.643x1.357]ecE6XMIydOMFBOIIVcDjXw==[/tex][tex=4.286x1.214]8P+mJTQY6HJEHacXCkf9Pw==[/tex]时,[tex=6.286x2.5]7W3A/Xd4cB7XtSHv0+Ko4BujgjXaX2udHXoo0pxp67ItCPn247+SifEiexwEHSkxAvLR8wUSF1rfPoth/UXe7w==[/tex][tex=2.929x1.214]FoRscl1t8e2BATVZdbLxSw==[/tex]时,[tex=6.286x2.571]8GaMXUg7juLgMe9V7xGxQikcVBdxQtTO9HIZwU5atOIoDqZIgoaQk+huWsj1MI1WEJad/oSTRXDAcDw2CNip4A==[/tex]由电场强度与电势的积分关系,可得各相应区域内的电势分布,[tex=2.357x1.214]w5oa5P798c8MJgSVDZA2uQ==[/tex]时,[tex=23.571x5.571]mOVLyVXxCcttztc2a2uGWHbuXMbYx6Ij11dYI7z8snioqY2G/yPt34Cd1L3i4m+z3PHaIExEsUTnJcIA9ynpQk9iyJV8L3zK9cTP+bsOBfevFyrS2C+He4ZNtPP5ISOpuWVOEa3P5YmUcv4hGigf7m/Hc4ORsorJQNRzAMtk6dHlpI5zXvNFSIIiEvaTA4fRZ0VeClvW5NoxSsmfyYAn/fQTVfosOxKnPYph5fQQu66xWqoxSShgJwxHM8tfHeQ71F5V9l6bUz7kVdQTQgwnW8kqDHGTKOb15wNKDlwoYkF1NNXWvaTQW6K0slMJN5Qk[/tex][tex=5.357x1.214]MOmgFL/X5VQYfktF7j4FRNBbUu4imK9ewgkE9stFw5E=[/tex]时,[tex=17.857x5.571]OWe9jTktviMQSOlTIV/hatRhO4j4STSd2GrxQDMQGyEYPnEgmP3Tgfwr74ZJBb60GbBGe6+3FZWwGVW0wG/QFD+v1mYotwXMlCm7V5bO9dJdGlkEq5TPmO9R4yCjahA+n9Zf37RYfh3fQFNmSr6JWKTbMXGh/dPsMAn/UGVge258oMphkt/5VSJWm3IPwAEMSmZEPWIxxWsw6Ws3IL1F5egUN+W6nmTFDIa53e9BWIXc45rqQbIefMj8Y3mL1Amw[/tex][tex=2.929x1.214]FoRscl1t8e2BATVZdbLxSw==[/tex]时,[tex=10.0x2.643]HQcJiWYUhprH64waBhUSSB90LYg4vh7GstH4nGM3vnmEXue5L/MatZVcZ9wDdwgrXq+sCjF3k41jDgsr5U6YioNgNhVe57IVxFX4gD0Y64X0oZvbpj9ITIg+d+1WtPWX[/tex]也可以从球面电势的叠加求电势的分布,在导体球内[tex=3.714x1.357]InGkoAODNLBpx9CqUiPvNi4kTf3iIA+kzVFobVcu9yI=[/tex][tex=9.5x2.571]Mr7SxJVmOL5gxZNz0QSj3dOiEPgZr46//QGyi04j6FO+cGAfri7tFXrk9gKqXfEdIUP4/Uq4QgJCPLJ07xO5g81VwB1vvAVeHKh/K8AEOaejCbou4xAtqodebha+YAjG[/tex]在导体球和球壳之间[tex=5.071x1.357]XdXA6Ou0f5PjRqrFqZINqTm8tfr5m/4LaNsYfTjJ6do=[/tex][tex=8.857x2.571]RzEBGQH9fGJuMq/w2EckQbqPmo2/rGurC32i833PmJXEY7Q5ThEemoMYsVqvhatIYSfUypTFb8LAhMeSGvqBwqleARBgpYvOMDBA0WT3cquaF6KF0VkEYAB385Zv6VZs[/tex]在球壳外[tex=3.714x1.357]plZGPBWnKNQfxYlJkVlz2lp6BlXamTYg4psyUN0MTDk=[/tex][tex=4.5x2.571]vXI1CHF4ySmXv8l7l2M/OHm1eLRwiL625yLSt5XhoIShV5/rIJ7L5Vhr2ezaIEx9[/tex]由题意[tex=11.214x2.571]Oc1Zj11i8JaPSKKvQdNakXewhhQtp302aKd4sMoEbm4gCUbwglWvxRCa9ffx40zS2T0NnHd8FbjXJklD1CeNh5bFCACD4SqD/y0rKWkac/+lnUlZ5UKkRGr1wb/aooxC[/tex]得[tex=8.714x2.571]qbhLzaEfdX+G2+QUqoQEvIQYcrYjjSJ29XFwTUaZ2KRwotP9x9wfjRSPHBk5iKCEPaFKJd5T5u3mi7xInqZguQ==[/tex]代入电场、电势的分布得[tex=2.357x1.214]w5oa5P798c8MJgSVDZA2uQ==[/tex]时,[tex=6.5x1.214]iUgq/9RVwAbq9ZkKVgyKT+DEqg3kvIW29jpHfQtAxYQ=[/tex][tex=5.357x1.214]MOmgFL/X5VQYfktF7j4FRNBbUu4imK9ewgkE9stFw5E=[/tex]时,[tex=21.286x2.571]AJHte2aRVmqyKzuYuRarZhat80XgWMJTCyILYjAnQlkqQ2azdLoLTeWHgifGOinnGojbek8e6VefMma8k0rrIGHO7TzbNtlrj9WMPxHPYrH7iozO3NgWJW/VPr/5SJg4GR+4twqoyRmPiQHrKsXhadSYVzlZlbxjw7RSMVM2hSfyk7C2gUqltNsfWpxwKTgDPbok/ZEq8hm+gmfY97JJrHiSUeqT1S0Uq3/3frobqKAdmJ9onhdhAMW8tOlUU8SN[/tex][tex=2.929x1.214]FoRscl1t8e2BATVZdbLxSw==[/tex]时,[tex=23.143x2.571]L6vzaRUWsTyHoZG+T0NtekiD9SqjxAOWY53v7LNSrUUBr+rEMimuLLXEVTfM9MaIME2vYQ1k5nPIFVeijfra0KvkWek3atIPYB+xLRFRdImM8H3+6H9531c2likDAltrj5VOul/weUZ4k9pADl3T0fVF6IAdysfIOHj0scdiL0OfzPrBGdcsR1uoYox8/WgSmKjQcywJ3UvTG80eniVeQTpmrWWwIZf/BPpCylj1/uKsr3VxAh2uMI+gWS+5Ri1lxWZryHHCiKAc+FOFi433Gg==[/tex]

    举一反三

    内容

    • 0

      半径为[tex=1.143x1.214]WB5oUFU97imVoOqmwwnMtg==[/tex]的导体球,外套有一同心的导体球壳, 壳的内、外半径分别为 [tex=1.143x1.214]akFdfHl3PdcRxRUQleHWdA==[/tex] 和[tex=1.143x1.214]2ljY3guytnv1qskVW16IVA==[/tex],当内球带电荷[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex]时, 求:此电容器的电容值。

    • 1

      半径为 [tex=1.143x1.214]WB5oUFU97imVoOqmwwnMtg==[/tex] 的导体球带有电荷量 [tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex],球外有一内半径为 [tex=1.143x1.214]akFdfHl3PdcRxRUQleHWdA==[/tex] 外半径为 [tex=1.143x1.214]2ljY3guytnv1qskVW16IVA==[/tex],的同心导体球壳,球壳上带有电荷量 [tex=0.857x1.214]bKYFB0pw9Vz5Wjasq5kxDA==[/tex]。(1) 求两球间的电势差(2) 如用导线将内球和球壳连接,两球电势各变为多少?

    • 2

          半径为[tex=1.143x1.214]WB5oUFU97imVoOqmwwnMtg==[/tex] 的导体球, 带有电量 [tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex], 球外有内外半径分别为[tex=1.143x1.214]GZKalQxeTwR7m5jifwr25g==[/tex] 、[tex=1.143x1.214]jd7OIcote8mnz8eWj+L5fg==[/tex] 的同心导体球壳,球壳带有电量[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 。求导体球和球壳的电势 [tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 和[tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex];

    • 3

      一球形电容器,内球壳的外半径为[tex=1.143x1.214]WB5oUFU97imVoOqmwwnMtg==[/tex],带电量为[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex]; 外球壳的内半径为[tex=1.143x1.214]akFdfHl3PdcRxRUQleHWdA==[/tex], 带电量为[tex=1.857x1.214]Cwu7vJ3NaaDmXMsd3+Qebg==[/tex] 求: 二球壳之间的互能

    • 4

      带电量为[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]、半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的导体球[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]外有一内、外半径分别为[tex=1.143x1.214]emkUjmSyLAermep9F5/N5w==[/tex]和[tex=1.143x1.214]9WTo6fbbWh4icW7owQwiAw==[/tex]的同心导体球壳[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],求外球壳的电荷分布及电势。