∫(x^2)cos(x/2)dx用分部积分法
如果答案是(1/6)x^3+(1/2)(x^2)sinx+xcosx-sinx+C,那么你的题目抄错咯,题目应该是:∫x²cos²(x/2)dx,那么∫x²cos²(x/2)dx=∫1/2x²(1+cosx)dx=1/2∫x²dx+∫1/2x²cosxdx=1/6x³+1/2∫x²dsinx=1/6x³+1/2x²sinx-∫xsinxdx=1/6x³+1/2x²sinx-[-xcosx+∫cosxdx]=1/6x³+1/2x²sinx+xcosx-sinx+C如果题目是∫x²cos(x/2)dx,那么,参考答案错了,正确的答案是:∫x²cos(x/2)dx=∫2x²dsin(x/2)=2x²sin(x/2)-∫2sin(x/2)dx²=2x²sin(x/2)-∫4xsin(x/2)dx=2x²sin(x/2)-∫-8xdcos(x/2)=2x²sin(x/2)+8xcos(x/2)-∫8cos(x/2)dx=2x²sin(x/2)+8xcos(x/2)-16sin(x/2)+C
举一反三
内容
- 0
求∫e^(x^1/3)dx用分部积分法做
- 1
用分部积分法求∫xln(1+x^2)dx
- 2
下列广义积分收敛的是( )。 A: \( \int_1^{ + \infty } { { x^{ - 3}}dx} \) B: \( \int_1^{ + \infty } { { 1 \over {\sqrt x }}dx} \) C: \( \int_0^{ + \infty } {\cos xdx} \) D: \( \int_0^2 { { 1 \over { { {(1 - x)}^2}}}dx} \)
- 3
8. 下列不等式正确的是 A: $0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ B: $0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$ C: $\int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ D: $\int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$
- 4
求积分∫x^2/(1+x^2)dx