举一反三
- 设 3 阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 2,5,5,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的对应于特征值 2 的特征向量是[tex=4.857x2.071]3wI+QNTkLmRrec03TCM9bFWZpADYRyMPrZBNYCkoBfU=[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的属于 5 的两个线性无关的特征向量可取为[input=type:blank,size:4][/input]。
- 3 阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 2,5,5,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]属于特征值 2 的特征向量是[tex=4.857x2.071]DhkZQ6U+YNvBth9C/XILFGkxyi4vnUTSy0Nkjx0spUQ=[/tex], 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]属于特征值 5 的两个线性无关的特征向量可以取为[tex=1.786x1.0]ZzxjEAB2AXFd3xR0QzWMaw==[/tex][input=type:blank,size:4][/input];[tex=1.786x1.0]G7He5rxqaYihPL+Om+uU4w==[/tex][input=type:blank,size:4][/input]。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex],求[tex=5.214x1.357]KR27PElEhnOmae67z3tEZQ==[/tex]的一个特征值。
- 设[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为[tex=3.5x1.214]Jfp+PtkFLbQA/fcHBJHZxQ==[/tex]与特征值[tex=1.286x1.143]Mj6+lbt3rBoas+xQLVX/oA==[/tex]对应的特征向量[tex=5.857x1.357]9JQPZANDq0F39/noGAxpdA==[/tex], 求[tex=0.786x1.0]76HZs7A5Sjy4tIkIUmevRA==[/tex].
- 设方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=2.714x1.214]WMOrAuHzL0/63n9dpkRz4Q==[/tex],证明:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值只能是[tex=0.5x1.0]Sc0he7miKB3YF9rgXf2dDw==[/tex]或[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]。
内容
- 0
设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- 1
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 阶方阵,将 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的第 [tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex] 列与第 [tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex] 列交换得 [tex=1.071x1.214]PSp40OyE3Da+bb1v5cWzIg==[/tex] 再把 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的第 [tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex] 列加到第 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 列得到 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]求满足 [tex=3.071x1.214]3+M19Dh1e/7vmqEyIJFlPw==[/tex] 的可逆矩阵 [tex=1.071x1.214]goCTjjcQ/6rEgdFE10fyyg==[/tex]
- 2
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]阶方阵,已知方阵[tex=8.643x1.214]+qFD/3zAVI0nPJ15/qkcqHlsilPVFjahQ03lgaPpUDY=[/tex]都不可逆,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的全 部特征值。
- 3
设 3 阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=3.571x1.357]fnSt53eoHfO8hXcWTcaeoA==[/tex]且[tex=2.714x1.214]+yxb2fEUuHYxLwX2MLViFg==[/tex],求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值.
- 4
[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.571x0.786]dhexd0YHgG8oWh1T/Sn8zA==[/tex] 阶零矩阵;求矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值和特征向量。