• 2022-06-15
    求线性方程组[tex=13.214x6.357]7EJHVCtO2IWq3KpdB+jQsrHCl3oODFt5CmjMvg8cZX/v9gklP+E2RRWz2G4AS8brK27NC/34uQHlMfNytX43g9Wnb+j2kkox2Cb9sNXEWqgHJ8iTKYZyauLHqm7Og1SWRi0x/k5E/JwKGB0mIHciVxnTREsEa+LDnXvSj/I1bJexotZqW2//WSr/nK/IsraiVC/Q9R4ER+y3x4zwbwaliqw5t9IRdMnGYeE7rRPygoNEMjlDjTca5ryHAr6GDDqMYOHZmU+YwP9EUoKlc2rVsYb+nb9sAlvX5uAR4bktLVeOYO+YC4xmdEMN2lt6WqPo[/tex]的全部解,并用对应导出组的基础解系表示.
  • 解:对方程组的增广矩阵施以初等行变换,化为简化的阶梯形矩阵:[tex=33.786x6.071]Pl82IheWxVFVdJ2+Fd7soiz+BGK6vHPvj8SLfavA8f3a26KnTS42GESWUNm01VL9LsB/gUAYGcObs4lt+G8N2h0zg/j1q9+raqMEmOdgnmFckxuw1OKNRBzqiPBAzDEZ5Klyy8ldDdnBD9XuRKCvL4SiSeG3aPqJwSyltLV5jvbwqZGNPhamgLr2Qtse9LZkk6oh2t40u/i+FUn/yruEHhRYtomb3kzzcImeQrpff/OIX8OVd0mPffToUjQcdh5+IepCqCWbhifsEjmRs3LUwzD2O8swE4hK4FTiRrgbJCr8NjK8kzz3qToqw7wZtD3DDm5O3E3dZsPoIuKIIivoO/lNpWfW4xe7Llhf/2e7rjT3oI/Yd+MRTOk1N3kT8lPfjOoulWiro+jV8NHGjkjBpVWNdW7IJKivj8UaX6xDfGWA/+q2AFEED7Qo/4TJ/Ky42n12ntv12H+a/HrPSduPpeuqhTFWuVDIi5153xueoJgYBj72t5Rgb2d/2Ow+zXZg2/bT5z5zwpLJQcIWIcu/rAXnZNczeC/pX9C0u5i4KU0=[/tex][tex=31.714x8.786]4cE0ePbKDHQd43eVw2HE+MWk+AVDwvnb2/wX8rVe3OWVx/KaFuJbA33JQ1ER7vYpwmPhDUDXCbIwqd9ahvzRbo+TnscLH9sbZPviS55D3hUrBHcdIfjJ2XWCqjE13rsNd0keGFiSVyQVPu5TmDpsKqM6huvwKyN75tWGzl97CJ4BrC7OZRKtGegWa05bC2WWuUp/Nm7aSKfx/xBgLRgH9GqbHuhYFX/99mve52vkc4C6xXkecurn0xAPkib13/TQhOqWCaHKWw3GbhzUUcstbR+VV7QKyLinH27mte0PzGRAaAnRf5Z8ibosvIC/OuKQzdTwSt7qo/dEu2zhjHkDPiJoT4JOHtJPcB3Z1TbwoybY4+dwJYS5lskbvil+kmoedeiuea9pDGy3q7Vn9qNtsmsaZlAlJue6Ky04GW+QjS0HxTC0iVEaSQ5819g/cS02Uho5H3Xr0Bea+BGGFBAcR68JYS+BbMsrYngfFCe6PDIER4Trzc/llUvVh4ghsW2Ku+nI+fHAwH0kXscYm4IkGSb/miMBEf0d0q02jxz3kQb/T1YOMa7EhZi9q6iGF/yU/TjTGss4WtTcVXldRYSgUQ==[/tex][tex=27.0x9.929]4cE0ePbKDHQd43eVw2HE+MWk+AVDwvnb2/wX8rVe3OWVx/KaFuJbA33JQ1ER7vYpwLNzJm2ZCTpTMsbj/qjPV8Zpp9eIPFe/7mHjAsUowbqvivUQtjcXZQlgRNib+Nz2hlL/taJ5xYry8SqWorK61KvGMq0QYCMQcfCxrt6vG8uR1pqyUwBzsBh+PRbMlsAEKYHMWFc7ujumnJPXc28ZBKSA1ezFcQ6/UZJgttRSLX5QgFi9tIgUUeAB0FdUbXEPobXidgFo/7F8Ihhm8tITG/fAu4EkF0G27e4DQdOVZHh6jg/y5ZHz5yXdM1DTh2vC33lEAIcLno9GqFrIY5fgHfmxRXBsFH58Fb1nFX6YP4RLvutHvz0EJF9vRl59mL/VKVV0xuF0DsTr+DaE1c6g7V6XxPFAHDTMS8Ao0vj/b80WGflDxqIGmm/wNCeoJUA9DyH4e4HAAtUPfbu/MuvT+Bo5f6Ta3TrCsrD/RhoVjsJHXOrASO+Eo50sFkuNjK/tXd4xY5XuYyCNwnZxjrHxNxKEWZ2StL9D4ftXajEfyGlhijTFeLHjxBQSh4dMLMGu[/tex]由此可得 [tex=7.0x1.357]SMB0AC6IZNDjxg6K+6zWVs07XJcGwZ/p+cesADP13k88bsvoOLqVzG/J0/MiXMC8Db58H70y0lcRA0aQpukpOO5dxYimetgZVIeeyBwhZs0=[/tex], 并且原方程组的同解方程组为[tex=7.643x8.786]7EJHVCtO2IWq3KpdB+jQsl/dsu3lvsZX7d/OMRd5w+ci4KHahCg3Qe2ITELsTPcG7MZ2ECXxtGQG3y4drvLfO5lLa9XFfAwYlgVts/BnOEkaTWIbRZE7fY1e2x5Ynv0X0ya54uSDzAkqW2RYGR0b4m173AGDS9ZShGCFL2E+HLUSf7IzxqTEUmHlrpyVvv15[/tex]令[tex=2.214x1.214]DfDWlUuPKBq2Oq8O7zbkrw==[/tex], 得原方程组的一个特解[tex=7.929x1.5]aysc6fFjVwsI73UVR65n0nGWtZSlPzNcS5TBTsWXgVOuKqArdjiayKiWeV759+Ru[/tex]原方程组的导出组同解于齐次线性方程组[tex=6.429x8.786]fnpmC2J6JmQBLyo5NmGAzwpbcBNRxSEfWymmxlwyBvp/TQRzkGGpdjwxarscjca/ygFs5+PT91AsrDTqO0P38tvqmKQEch4vuuptStCZPAWieSvy8rGqPvPygoKSUaYw4+6RoDaPUChzSsFciZot8Y/+3iKFjyM7kNPCbdOtTLWT1cmxOBlWnRd1kPD9dZjr[/tex]令自由未知量 [tex=2.214x1.214]/eMsBpi+D4UvNpN3II7kTw==[/tex], 得导出组的一个基础解系[tex=8.5x1.5]zRMWiqRZr9+NCWWY6BGoOAqgbokpWercoAZLXezhgD/3SaB7jJxKLWIltkhSBhUY[/tex]于是,原方程组的全部解为[tex=3.786x1.643]qeiYnKXLEhyhuGRg8yLtr8pND3/ziZtBfQopy5e/6reOUH2ZhF/B1hoQ6vLf23QBDMHit+Z/gBn4Jbui/9R/fw==[/tex][tex=15.786x1.5]sKQ2L5eZ4Ndn84DiqQD3Pb59y0qILOZrR1/AvK+Q8Ml6xFHFU4oLmpiELXwRr5hrcBxcAYgf59s7pu1+uMf4Jw==[/tex]其中 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex] 为任意常数.

    举一反三

    内容

    • 0

      A=[1 2 3 4 5 6 7 8 9]A(5)=[]A=1 4 7 5 8 3 6 9

    • 1

      已知a=[1 2 3; 4 5 6; 7 8 9],执行命令:a([3,1],:)=a([1,3],:),a将变为( )。 A: [4 5 6;4 5 6;4 5 6] B: [7 8 9;4 5 6;1 2 3] C: [2 2 2;5 5 5;8 8 8] D: [3 2 1;6 5 4;9 8 7]

    • 2

      当执行下面的语句定义一维数组a后,此数组的所有元素为 ( ) inta[10]; A.a[1],a[2],a[3],a[4],a[5],a[6],a[8],a[9],a[10],a[10] B.a[0],a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9] C.a[0],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9],a[10] D.a[1],a[2],a [3],a[4],a [5],a [9],a [7],a [8],a [9],a [10],a [11]

    • 3

      以下程序的输出结果是___________。for i in range(1,11): print(i, end = " ") A: 1 2 3 4 5 6 7 8 9 B: 1 2 3 4 5 6 7 8 9 10 C: 1 2 3 4 5 D: 1 3 5 7 9

    • 4

      输出九九乘法表。 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9