• 2022-05-28
    设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个拓扑空间,令[tex=4.786x1.286]YTQzLz+sesI1dQ5UGt8Nb7XN1gDRtIK2HjDLwQB/utY=[/tex]是一个连续映射。证明:如果[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是一个可分空间,则[tex=2.214x1.286]Pg+l0RmQux/c4VWlzlwt1w==[/tex]也是可分的。(这说明可分性是一个连续映射所保持的性质,并且由此可见,它是一个拓扑不变性质,可商性质。)
  • 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的可数稠密子集,下证[tex=3.071x1.286]ETaHnBd4AwdeaS+z2hhCCQ==[/tex]是[tex=2.214x1.286]Pg+l0RmQux/c4VWlzlwt1w==[/tex]的可数稠密子集。对任意的[tex=3.929x1.286]QG+5/OQIrDGEzlbcB8YmpA==[/tex],存在[tex=2.643x1.286]cOKcbB6N41IUenq4SUxYPA==[/tex]使得[tex=3.714x1.286]U3nR9ZdVDCFdSaaR+n52Fg==[/tex],因[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的可数稠密子集,故存在[tex=4.0x1.286]ZnNkboknZHYzGMylDdMqw2mVBXUd6IajZ4eCnB9j3yc=[/tex],使得[tex=3.214x1.286]l+AZLxKGc2TzD+XMw38CBGjY9TaV/HIBPd3qfefq2y4=[/tex],由[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]的连续性知[tex=4.5x1.286]VxBqvhHtFAwq876VsoL6B1PXciXKqoJSWrGsm0NrpMc=[/tex]。以上表明[tex=3.071x1.286]ETaHnBd4AwdeaS+z2hhCCQ==[/tex]是[tex=2.214x1.286]Pg+l0RmQux/c4VWlzlwt1w==[/tex]的可数稠密子集,所以[tex=2.214x1.286]Pg+l0RmQux/c4VWlzlwt1w==[/tex]是可分的。

    举一反三

    内容

    • 0

      设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .

    • 1

      设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是一个满足第一可数公理的空间,证明:[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是Hausdorff空间当且仅当[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]中每一个收敛序列都只有一个极限点。[br][/br]

    • 2

      设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是只有两个可能值的离散型随机变量,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是连续型随机变量,而且[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,证明随机变量[tex=4.929x1.286]bstb6Acm/GnARrPc8f1uPw==[/tex]是连续型随机变量.

    • 3

      设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的方差存在,证明:[tex=10.143x1.286]HG2ihwjcXTdzCTS/bC0QJsaC65j3BHkkW1/8B8OIxFg=[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关的充分和必要条件.

    • 4

      若随机向量[tex=2.786x1.286]d8ZGztHRaPoTHI8v2JwIGQ==[/tex]服从二维正态分布,则①[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]一定相互独立;②若[tex=3.5x1.286]sKaD0gq7ZfmqhDuxwY0565jK5tQQMeY1a44eA15r+0I=[/tex],则[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]一定相互独立;③[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从一维正态分布;④若[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立, 则[tex=6.143x1.286]1FUpcitV2qNzFaSobaOhNfKUbfF8QOwkW6yD2rc0W2g=[/tex],几种说法中正确的是 A: ①②③④ B: ②③④ C: ①③ D: ①②④