• 2022-05-27
    设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]为实数集. 问:[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]关于数的普通加法以及新规定的乘法[p=align:center][tex=3.786x1.357]iPHWC7DzDH/VcYnxKnhrApzUjX1G5eB4n8TaJ0t/Tv4=[/tex]是否作成环?
  • 解:由题意可知乘法[tex=0.5x0.786]ZZdfGN8ROAaru4eGZpmpGQ==[/tex]满足结合律,又[tex=0.5x0.786]ZZdfGN8ROAaru4eGZpmpGQ==[/tex]对[tex=0.786x1.071]69+kU7Ut8flSnkhVcSN/2Q==[/tex]也满足左分配律,但是右分配律不满足. 例如易知:[p=align:center][tex=15.143x1.357]/jYY0luLrOtiH/J+7pfjLIo+ZKmAOpwJiv+jgAU9myOFnqvaq5so1Rj+rjkzuvQe/RE9W6Jno7N3xf50eB5ESQ==[/tex]即[tex=14.643x1.286]Jxe8holRzt0uAlV5ejX5pBnNE0/v31M0W4gf0fgyDfcnY3TzmoAawZ2bocY1vBrMnu+UdQDKl3rXabaenb3TsA==[/tex],故[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]对[tex=0.786x1.071]69+kU7Ut8flSnkhVcSN/2Q==[/tex],[tex=0.786x1.071]69+kU7Ut8flSnkhVcSN/2Q==[/tex]不作成环.

    举一反三

    内容

    • 0

       设[p=align:center][tex=25.286x2.786]DC5nH2VXicvarJPcT/8DcREQl36dwwi+5uU0ZTh+dh1uMweuOFwyw7zYrQ1hTkoSb7X3/LQBZMoqXSr29DOp5njsaNjBvFx7+qGhaIgj3gr4DLUGFOrgIquM/QMZewVa4/fkBhgy9a9J5WKR+wT2XvB+OHrPGzeO8s98+r+oLEZ7ObEj8MJu8hxPGskh+NyJEVoRHbuiey9RZaTuf3wxZ8t8v/kwPMojHtqmljEXSp1q5IVvItI293G8eSVXq3x4COhH/xRqVOB2ulxdPfli+iNDz03SexoJIXR2ERVbgl8=[/tex]证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 关于矩阵的加法与乘法构成一个环, 且 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个极大理想.

    • 1

      证明   设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元 [tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex]的环, 则映射[p=align:center][tex=5.143x1.214]4huI4vPuOC5DwSwh9v+pqmZ8zIR4uMpqJJGCJdNZD5284UHYZUBluqcDPeiVBFsU[/tex][p=align:center][tex=3.857x0.786]xjKJOk7jgWMso5Sqhr+k7m3CrOAppVSxOnlWEawUee8=[/tex]是环 [tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 到 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同态.

    • 2

       设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是整环. 证明: 对 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的任何非零多项式 [tex=4.429x1.357]xDE+DYVVlqrwETxnz6Xubg==[/tex] 有[p=align:center][tex=15.5x1.357]79Wd/JsaQKi3RBB3vwr83y9aNKwSst378OWInw7DpxyGmQvFvzv47TsWEB5CANuf6zpgFv5dmqUYhh4odqlC50+QDGCeyPT0ix16HCQ6y8st/RB8mbB6Oa20he8QsA61[/tex]如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 不是整环, 这一结论还成立吗?

    • 3

      设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的环. 证明: 环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的可逆元全体 [tex=2.286x1.357]VSrq2EBbjY/lzOCsf2jcIg==[/tex] 关于环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的乘法构成群. 

    • 4

      设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构, 证明: [tex=1.571x1.429]WwcGTNxNgqKGUcObs50zWg==[/tex]是环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]到环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的同构.