• 2022-05-27
    设[tex=2.286x1.214]3g6BQlbwSX/DLbvhc6A8PQ==[/tex]不共面,设向量[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]满足[tex=2.429x0.786]7XYeXl1HIhWEAH8n0NPBsA==[/tex],[tex=2.786x1.286]+kIsvNtaVqd85ORmVlVUYGOLGBhRk/og9NsaWNZHRqE=[/tex],[tex=2.214x1.0]YKk9sue/NX7OEU81UbrXDQ==[/tex],那么有[tex=4.929x2.214]6cxmpltEh6pW2TWZIEMzX3sVrG60SQdUupvC0f1Ey0Q=[/tex][tex=11.143x1.286]6lhM+ZMhfBEmeH4RJgSAnBR2cFvD2n8HuJ8tNqWurJGUwNyybUdQKyDvtgQJJH5x7ik19ax/iA9bEOjFuwDxfA==[/tex] .  
  • [b]证明[/b]     因为[tex=2.286x1.286]hyRhwdWJnJH7QUw/YHdSeA==[/tex]不共面,所以[tex=7.143x1.286]yc/tYRFuGM3m/FR87evEheOxSzGwBLKdzkNa4s5zdySY2c7fH44vKUI/QbSARq1k[/tex]不共面,从而可设[tex=5.857x1.286]5VK8B00LDTf0KXXrHw7nVHksm4+duPrAqCkCymHvek0=[/tex][tex=7.929x1.286]hsFbync3cy/jVWMoSz0dcjYEhNHUoLIYN1xO6HL1w+oqMuIb14umPwIbK01cwQ5J[/tex],两边分别与[tex=2.286x1.286]hyRhwdWJnJH7QUw/YHdSeA==[/tex]作内积,则有[tex=8.0x1.286]j6gD+/XgXSJliKDUU/hCkY0wPdfIWrYkgl+NOSJDXqA=[/tex],[tex=7.857x1.286]MOj2L9aQD4zdn50eaZq1eiDgXoPZ6HzGtE/2r/AdiHg=[/tex],[tex=7.786x1.286]Sfv7KnGRIQYO+J7QcZAbh9NaKiRaTBusY1s1mSi1AVk=[/tex],于是[tex=4.929x2.214]6cxmpltEh6pW2TWZIEMzX3sVrG60SQdUupvC0f1Ey0Q=[/tex][tex=11.143x1.286]6lhM+ZMhfBEmeH4RJgSAnBR2cFvD2n8HuJ8tNqWurJGUwNyybUdQKyDvtgQJJH5x7ik19ax/iA9bEOjFuwDxfA==[/tex] .  

    举一反三

    内容

    • 0

      判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]

    • 1

       对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7;           (2) 8;               (3)10 ;(4) 14 ;         (5) 15             (6) 18 。

    • 2

      设随机变量X服从标准正态分布,X~N(0,1),则[tex=4.357x1.357]N96gAKyTxAFJGbzY6VEFhgJk69lxWJAsOnu5yxPIE60=[/tex][input=type:blank,size:6][/input].

    • 3

      若要将一个长度为N=16的序列x(n)重新位倒序,作为某一FFT算法的输入,则位倒序后序列的样本序号为( )。 A: x(15), x(14), x(13), x(12), x(11), x(10), x(9), x(8), x(7), x(6),<br/>x(5), x(4), x(3), x(2), x(1), x(0) B: x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7), x(8), x(12), x(10),<br/>x(14), x(9), x(13), x(11), x(15) C: x(0), x(2), x(4), x(6), x(8), x(10), x(12), x(14), x(1), x(3), x(5),<br/>x(7), x(9), x(11), x(13), x(15) D: x(0), x(8), x(4), x(12), x(2), x(10), x(6), x(14), x(1), x(9), x(5),<br/>x(13), x(3), x(11), x(7), x(15)

    • 4

      由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.