举一反三
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是定义在所有位串集合上的关系,[tex=1.643x1.0]Kqo7xjU3OBYrrdLAfqfD/w==[/tex]当且仅当[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]和[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]包含相同个数的1,证明[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是等价关系。
- 设力学量A不显含t,证明在束缚定态下[tex=3.0x2.429]CvyIkmwiTv5AMf6X0zLqU6tSKiGKd2Fjf8pRTiJbIIy8xaiq/W0n0gslazvZZeQY[/tex]
- 设[tex=2.786x1.357]AdT1Ywl2aGGiB/EXxjVWAA==[/tex]为[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]时刻的消费水平,[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex](为常数)是[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]时刻的投资水平,[tex=2.929x1.357]kG0nCtqPr/uYlTBNdenzOA==[/tex]为[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]时刻的国民收入,它们满足[tex=8.857x3.357]fnpmC2J6JmQBLyo5NmGAz4SYZuM09ZmogZQNx7HZ+/ea7/kbX0wHuYFcxJLtBKfIWjNApc2tX6GAYbgohuLjFnhGcw6RKpeMAJys0d1wptE=[/tex],其中[tex=8.286x1.214]ETbCmEd46Z/AcmZYfvB36g==[/tex]均为常数.求[tex=3.786x1.357]L+aF9FS6Xp9Rg/2QJPWSyQ==[/tex]
- 多元线性回归分析中,[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]检验与[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]检验的关系是什么?为什么在作了[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]检验以后还要作[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]检验?
- 7个变量出现在计算机程序的循环中。这些变量以及必须保存它们的计算步骤是: [tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]:步骤1~6;[tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]:步骤2;[tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex]:步骤2~4;[tex=0.786x0.786]44SGfA2gQ2VZlXa1QKZD0Q==[/tex]:步骤1,3和5;[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]:步骤1和6;[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]:步骤3~6;以及[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex]:步骤4和5。在执行期间需要多少个不同的变址寄存器来保存这些变量?
内容
- 0
设在时间[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex](分钟)内,通过某交叉路口的汽车数服从参数与[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]成正比的泊松分布,已知在 1 分钟内没有汽车通过的概率为 0.2 ,求在 2 分钟内有多于 1 辆汽车通过的概率.
- 1
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.
- 2
求[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]的值,使二次型[tex=22.429x1.571]JLm2GSM4LZ595FWooMQMWd9gmISBtAIl+HEGB8g2d0ZGTMu6wTejMoVJxYJ8fuDc6KTvHLIs8fmn9Ob44d1o0JLs6vUcKAeXqPXRXpHZrZ0=[/tex]是正定的。
- 3
[tex=2.429x1.214]ll/NBHw6J7XHWpoBYchyjg==[/tex]的半衰期为1620年 . 若[tex=2.429x1.214]ll/NBHw6J7XHWpoBYchyjg==[/tex]的初始量为[tex=1.143x1.214]mP8BNHL5SoDaqzpYVe5EHQ==[/tex],(1)写出[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]年后[tex=2.429x1.214]ll/NBHw6J7XHWpoBYchyjg==[/tex]的剩余量的表达式;(2)500年后[tex=2.429x1.214]ll/NBHw6J7XHWpoBYchyjg==[/tex]的剩余量是初始量的百分之几?
- 4
已知 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 阶实对称矩阵 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 合同于对角矩阵 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex], 其主对角元素中有 [tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex] 个零, [tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex] 个正实数. 问 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 的秩、正惯性指数、负惯性指数及符号差是什么? [input=type:blank,size:6][/input]