• 2022-06-06
    已知直线的一般方程\( \left\{ {\matrix{ {x - 2y - z + 4 = 0} \cr {5x + y - 2z + 8 = 0} \cr } } \right. \), 则其点向式方程为( )
    A: \( { { x - 2} \over 2} = {y \over { - 3}} = { { z - 4} \over {11}} \)
    B: \( {x \over 5} = {y \over { - 3}} = { { z - 4} \over {11}} \)
    C: \( { { x - 2} \over 5} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \)
    D: \( { { x - 2} \over 2} = { { y + 1} \over { - 3}} = { { z - 4} \over {11}} \)
  • B

    举一反三

    内容

    • 0

      设方程\({x^2} + {y^2} + {z^2} = 2Rx\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { \partial z} \over {\partial x}} = { { R +x} \over z}\) B: \( { { \partial z} \over {\partial x}} =- { { R +x} \over z}\) C: \( { { \partial z} \over {\partial x}} = { { R - x} \over z}\) D: \( { { \partial z} \over {\partial x}} =- { { R - x} \over z}\)

    • 1

      设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)

    • 2

      曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$

    • 3

      求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$

    • 4

      球面 \(x^2 + {y^2} + {z^2} = {a^2}\)含在圆柱面\({x^2} + {y^2} = ax\) 内部的那部分面积为 ( ) A: \(4{a^2}({\pi \over 2} - 1)\) B: \(4{a^2}({\pi \over 3} - 1)\) C: \(4{a^2}({\pi \over 2} + 1)\) D: \(4{a^2}({\pi \over 3} + 1)\)