[tex=1.786x1.357]xWtykrJbvETsyNuuro0ORw==[/tex] 为素数 [tex=0.429x1.357]VJTYmdtttZvFrSMSWqFgqw==[/tex] 上首项系数为 [tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]的[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]次本原多项式的个数为 [tex=5.857x1.357]psSCagVomGoT8pYV5WK93PHSvwE4zc/+MQAzzTpEBAvVbf6fqD3WizegiDfZKRZN[/tex]这里[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是欧拉函数 (参见第二章 [tex=1.0x1.214]JXWhQBgBtAiWl/pk1Qz1Sw==[/tex] ).并算出[tex=2.571x1.214]5P9dW4pjlsQrDx5KQbUTs4G5Uf8NSaqBgk2U5pXCoz4=[/tex]上三次、四次本原多项式 的数目.
举一反三
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]
- 设 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴正方向到方向 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的转角为 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex], 求函数[tex=8.071x1.5]/sT/AbKDQ8781LFnllHoOZo3vVkWfzSCynygzWNL8Es=[/tex]在点 [tex=2.143x1.286]OGI1nc8WH38NKUnYUafisA==[/tex] 处沿方向 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方向导数,并分别确定转角 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex],使这导数 有(1)最大值;(2)最小值;(3)等于 0 .
- 证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].