• 2022-06-16
    曲面 [tex=5.429x1.357]Lg5Phrk4fm+3iA/jXTdBAA==[/tex] 上的一条曲线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 称为曲率线,如果曲线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 在每一点的切向量都是曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 在该点的一个主方向. 证明: 曲线 [tex=8.929x1.357]rWwQlBxD3aXQXZiWg+hy0sodtqTCBTrdUmHz31xydaU=[/tex] 是曲率线当且仅当沿着 [tex=2.643x2.429]GF4qzg9/Su8+nYXFNMI9yv6KkBP0vaXvxssi2KGGaM4=[/tex]与 [tex=1.214x2.429]Urrn5wfTdykIP5J7P3smyE15KoH6F71sdbyLIUJo+Jg=[/tex] 平行.
  • 设 [tex=6.071x1.214]me/fPi/8f3S22COb/JffRkNPpVAUVXUrj1G/yX9rT4aT/xluz4GW4g2lmyYPIU8A[/tex]为外恩格尔登变换,则[tex=28.643x2.786]HWmg2sJOUUJUvpOy2NZ9rUu6V5Mq2RXocesK37SZ0WSgmxQc2cmYWDpqUe7PmR8Ea1/Ti03C005HQtcFc5EAdOobhJH5IIi/1QU/AniJJTMgsvdpyxSiq4By7r0EvxnPP0pgFnZIJLHKLbptw6wA7cPrBfjJSd9Ri+L8Ayl1jmeT6Ev0wHojvrDhvT0paJmvYXN1IRbfYXpZOj5EUEWv52f/7XRIsMhWzc9bXhwog+8iXsgdAGhMI7EzzrPqd0+ePk3eV5o/+rfhET7S8GwUFw==[/tex]所以,曲线 [tex=8.929x1.357]rWwQlBxD3aXQXZiWg+hy0sodtqTCBTrdUmHz31xydaU=[/tex] 是曲率线当且仅当沿着 [tex=2.643x2.429]GF4qzg9/Su8+nYXFNMI9yv6KkBP0vaXvxssi2KGGaM4=[/tex] 与 [tex=1.214x2.429]Urrn5wfTdykIP5J7P3smyE15KoH6F71sdbyLIUJo+Jg=[/tex] 平行.

    举一反三

    内容

    • 0

      设曲线[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]是旋转面[tex=14.929x1.357]qJtg9UpQ2uL0/hPbUJ0vjiyMbrbbwyvqiTvo07flICazGIeDUMqEcU6spIqoRkqkk2F+XYzcizR2GopzPZbymQ==[/tex]上的一条测地线,用[tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]表示曲线[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]与经线的交角.证明: 沿测地线[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]成立恒等式[tex=4.929x1.357]vSqvzw60iKi7HLOEhjEdPF3+iXhXciqaql3AxPfnuYI=[/tex]常数.

    • 1

      设 [tex=4.0x1.357]zg93hysKV7tYatsom61VnQ==[/tex] 是曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的一个参数表示, 证明: 曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的参数曲线 [tex=1.357x0.786]M6ehz/katz5+UuZLyv9XuA==[/tex] 常数和 [tex=1.286x0.786]iCVy1X1XDEZ3BhCDPkCybw==[/tex] 常数是曲率线的充要条件是 [tex=4.0x1.0]M/edCBd3V8iB/X7pCUIRXw==[/tex] 

    • 2

      设 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 是一条周线,且设(1) [tex=4.143x1.357]Wy3cd4kyceqegPIDJ3x11j2jym1Kg4lFoW1rOkTlGpM=[/tex]在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部亚纯,且连续到[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],(2) 沿[tex=7.286x1.357]XWbpt2HRfoTV0aZ1h1ig7I4qTwaTFFBXd7MFEm482XA=[/tex],则(试证) [tex=25.571x1.357]S/PgHmSM7NO+JOQc/JazMAFE9Aff9/2LMeNZ5hD7T7yaeXuvLfgKlxqQZzwI3KF3ViV8oQdGBLBAVp0DCcLlgsHXj3TH8EaufiCuCImQSp8=[/tex]

    • 3

      设抛物线[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]与x轴有两个交点x=a,x=b(a<b).函数f在&#91;a,b&#93;上二阶可导,f(a)=f(b)=0,并且曲线y=f(x)与[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]在(a,b)内有一个交点.证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=4.357x1.429]/FYTUVhgTPYa3RqQR+bSSXpHSralD3pTYi2H35Z8qsw=[/tex].

    • 4

      证明: 曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 在 [tex=0.857x1.0]sKuuIgoU/ynFEIl8B2/CpA==[/tex] 点的切平面 [tex=1.714x1.214]SlGwVMinFiqVLbzeQlEiOA==[/tex] 等于曲面上过 [tex=0.857x1.0]sKuuIgoU/ynFEIl8B2/CpA==[/tex] 点的曲线在 [tex=0.857x1.0]sKuuIgoU/ynFEIl8B2/CpA==[/tex] 点的切向量的全体.