举一反三
- 证明群中的指数规则[tex=5.0x1.357]8gU3fRp8R0O1rdwfiZPtswofruVT/uMAzczMaIxJHuA=[/tex]([tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]均为任意整数 )。
- 设 [tex=13.286x1.571]3NeE/+b7wqfz7bsxCdTwuMoTPj+6H2QZDOxE7fAItoVpAELDg20RrzMsVOmVFiurOchFImkEtyGJIDLnGrK1HA==[/tex] 为解析函数,求 [tex=0.357x1.0]s/GoTwfodlUYfjZgjlUDtA==[/tex], [tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex], [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex] 的值.
- [tex=22.0x1.357]LHJ+y85YXU3v8GHWdrdQw3Wkm42jO1uuQ9ReIJQjcZKuQS9dt8xQcTgSBjKkS3fb[/tex][color=#000000][b],[/b][/color][color=#000000][b]求 [/b][tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex][/color][color=#000000][b]全不发生的概率.[/b][/color] A: 3/8 B: 7/9 C: 5/9 D: 5/8
- 证明群中的指数规则:[tex=7.286x1.429]ImdW/RxhVJeBagy+68Zj+a2rI1mt44ERyqwZ0jkWKos=[/tex]为任意整数)
- 证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].
内容
- 0
证明:方程[tex=5.429x1.214]unY/GxrtAwP+9oZ/4P89yQ==[/tex]([tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为正整数,[tex=1.429x1.0]EHzsglf5n1gYY95L4Z4giQ==[/tex]为实数),当[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为偶数时至多有两个实根,当 [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为奇数时至多有三个实根.[br][/br][br][/br]
- 1
6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 2
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]次多项式[tex=3.214x1.357]kTpMd2BI8LQ4Hmb8qBngfHbPirYnb5xBfDti2joKxn0=[/tex],又[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为凸函数,试证[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]必为偶数.
- 3
令[tex=3.357x1.357]UPaNvJfcVjX9mh3S818g8w==[/tex]为语句“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,其中变量[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的论域均为正整数集合。(所谓“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,是指存在某个整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使得[tex=2.786x1.0]JyKu5Q0JmohTgp+FMz2hRQ==[/tex])确定下列每条语句的真值。[tex=2.714x1.357]gkwGei5ITDOF0egHPEe5fQ==[/tex]
- 4
令[tex=3.357x1.357]UPaNvJfcVjX9mh3S818g8w==[/tex]为语句“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,其中变量[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的论域均为正整数集合。(所谓“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,是指存在某个整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使得[tex=2.786x1.0]JyKu5Q0JmohTgp+FMz2hRQ==[/tex])确定下列每条语句的真值。[tex=2.929x1.357]9Vv4gtpaKbF7Mnn315YE6Q==[/tex]