设[tex=3.5x1.357]1zJHZig9KIFuB/Px6wfp5MGg92Zd71mJVPkZnLdqEqc=[/tex]是一个环,试证明,如果[tex=2.857x1.214]KBtofXQJ0vaVjVO14O8Jlg==[/tex],则[tex=11.143x1.5]d3aked9cn78zBDhwBF8p7o6/JNjgDy5ApDvbwfY0dAWw4lDXUcmt4BtDzbrdy293[/tex]。这里,[tex=3.5x1.214]oRef4oyT3YSx/qGQCGzozg==[/tex],[tex=3.214x1.214]6LMj6aAQw/iIsBIHtRG0Kw==[/tex]。
举一反三
- 设[tex=3.5x1.357]1zJHZig9KIFuB/Px6wfp5MGg92Zd71mJVPkZnLdqEqc=[/tex]是一个环,且对所有[tex=2.0x1.071]uIrQpyHDCcqFaqZZEmU59g==[/tex]有[tex=2.286x1.214]CMJZtz4RRi9Ex8L7JiW1zw==[/tex],这样的环称为布尔环。(a)证明对于所有的[tex=2.0x1.071]uIrQpyHDCcqFaqZZEmU59g==[/tex],有[tex=3.143x1.143]WpXdwXOkANzg43A9uO9FTA==[/tex] 。(b)试证明,如果[tex=3.429x1.357]Oma5fW4OfmuW0k2Dt0iruQ==[/tex],则[tex=3.5x1.357]1zJHZig9KIFuB/Px6wfp5MGg92Zd71mJVPkZnLdqEqc=[/tex]不可能是个整环。
- 设[tex=3.5x1.357]1zJHZig9KIFuB/Px6wfp5MGg92Zd71mJVPkZnLdqEqc=[/tex]是一个环,且对所有[tex=2.0x1.071]uIrQpyHDCcqFaqZZEmU59g==[/tex]有[tex=2.286x1.214]CMJZtz4RRi9Ex8L7JiW1zw==[/tex],这样的环称为布尔环,证明[tex=3.5x1.357]1zJHZig9KIFuB/Px6wfp5MGg92Zd71mJVPkZnLdqEqc=[/tex]是个可交换环。
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)