• 2022-06-08
    一个正交相似变换矩阵,将下列实对称矩阵化为对角矩阵 试求[tex=8.643x3.929]075gCzZzsMRb6HYXYk9X9+gPhGNPkO30zekP5o1hRUtuTUxBKSNtJwM5yRYuOdQjzgWDs1SPX5swRWT5U25QfijwiCERpV9fMiQe+aq0Eai0jGsStQRsKKHji81peLtz[/tex]
  • [tex=22.714x3.929]Pf7bwNvA+koSkuLyqm2voiGn9e5gawvFvhJCM3vJN9vvPlsdrDySVehxlF0YTlEOY/O1FJ4kxWoLcK83NdkTHRhZT/9n/5+06S2sTFjGmoH4nmh9tCXF2gsOJQlvApbKSSntrWWCvRp8oZcOY8My12P/ntnQHZZaVVZWNlBz9uvUdftbwKth03xxyJZj7u0bZYyolqiwhHqcnyiEq8qXsc6YvTglVBYT30hDs0dhNcrPLOvbjvSHVq93Cp5mCwbr[/tex]故得特征值为[tex=7.214x1.214]y6VEgP8wVjIl90YyZE8lya8mUkOvLc17VM7akr+EiyH1Tnxd9wsExDpPkjvX8hpW[/tex]当[tex=2.214x1.214]kyBC0GZrzxawBkSaUDYUXw==[/tex] 时  由 [tex=13.786x3.929]075gCzZzsMRb6HYXYk9X92bYbIcEjAvAEAINXzF9fW1YF3ExG/qfZYIws3+bafubR3ngOtut/FMua0vDjpWVIsOakRZrNFVrq60+U4zdws+4FOya8vuwBuI1KeWG8XGo0116a3q9hsWKXmtI4oV08akuFPh04Z7TE/W44Q9W18J2jOYMDvgtdnEPwJIwXvFKO1/Yi0i1wh955tF0gESd7w==[/tex] 解得[tex=8.571x3.5]075gCzZzsMRb6HYXYk9X97a+RGSvPim4PxX64lWV4MPghQZf6zMajsU0hZuaKh4dx/wDCp/u2zyNU/dw6DvI/coipTbFFFrKSpTNm+qMybStPJPDAez6vjXPC2OyhvcTuVsmfnYiBAYoXiyeNkYkiyC7hFZsAIzUoQ8qNirPw08=[/tex]单位化得 [tex=7.214x5.214]6Qnm7F/9wMdPkyU4eApj4jNEyJonvPX9xWp5pDirb4yy354dp40zJODyWHaSYZ5UNKCluOSED5MHSQwfSXAdvvu5honMzr8qa+0q8RbGEDfE8ec6R9JWJ91m7AzsuxN/F575UNyJzDWAqpvlgiz2XQ==[/tex]当 [tex=2.214x1.214]zn1GWE622oSp+/gx2EQljg==[/tex]时  由[tex=13.786x3.929]075gCzZzsMRb6HYXYk9X94v9PHeD929eESGeAmJ1dBzg+BwH3ualjBT8jBHQDCLa6PkUyWGKRclqytq85qjCvYN/+QAJZFlNXY6AOrAqdWC7Tk+qAf5df44p73HwuZMzh3U+0AaN6fql4mi4w6G0BrC6EaSST3hK47qN17dck+LCL1Mv8HpFZ/L1wTaHwXAfI1h5w4DSeFamRL3yawgIty1zq6/84FB+8/qOM2JGZ4E=[/tex] 解得 [tex=9.357x3.643]075gCzZzsMRb6HYXYk9X97a+RGSvPim4PxX64lWV4MPghQZf6zMajsU0hZuaKh4dx/wDCp/u2zyNU/dw6DvI/Y5RewQl4K4UMtNg4RTiW4n7cclW/nFXEgEUjNmzC+ve7ULmHPccm1B3BYQzXSCd63yeAxoHltmbEh6/a87isH8=[/tex] 单位化得 [tex=8.0x5.214]6Qnm7F/9wMdPkyU4eApj4pBQ7YQloFyA46GOxYiFFsGOHgK4qXw0hoMhjSPdlCUkDwbzUUzaiRT/nNFkoeVKb+FW48K4NyERv6HreABWwE+e/JYmCo10btHodL0OBNSB1L+3/5ApbYPaqK4Ylf8Qvg==[/tex] 当[tex=2.214x1.214]aUDGXE1CSzrSyJMj4zncPg==[/tex]  时 由[tex=13.786x3.929]075gCzZzsMRb6HYXYk9X97JbChWJ4raL15RNw2kJccO4an5u4CAnMNiRgruGEGp1y/DUKsD2vDYMkhYHN81W9kbj3FLN5+0bhto2aWJkSTEW+pGDucX/yeAj8uh7dCHjdy9W7B+e/j5u9Tn+jixb3YoUzcm2ccWte/SBvRcWDnJFdi8JrjPL20X3wr6yd13xIl9NJ5BDOKsZRfcvKyRMMGWe0XLZauIHd1iJJBGrTLI=[/tex]解得[tex=9.357x3.643]075gCzZzsMRb6HYXYk9X97a+RGSvPim4PxX64lWV4MPghQZf6zMajsU0hZuaKh4dx/wDCp/u2zyNU/dw6DvI/XnxUh31MR8tI9LX80g68zVfiaDwvCWU2BnoIG2gpbULPymg+IyrzY5L1tYexlXL/AvzDFCi706tiWKtz+pIeo0=[/tex] 单位化得 [tex=8.0x4.643]6Qnm7F/9wMdPkyU4eApj4kN5Ai3aqb/bAvq833RwVcobxdXrF66u1UJKlFNHJY4IUKMvDgwvht139tI+/H/HUnPaqaULyPGy7XE7ty8bQpiCXpDLu2Ltcv/sMLBMa76q[/tex] 得正交矩阵[tex=31.143x5.214]0idGSV3RW/tbV3escumNdN+YrHCl32J0V2wupqOTo3xPy4J7THfwJm6v4EhSTjZnc1P0vn3tszw2sjP6+/p+wd63cgu2bEml0SIKuns0IdhgaQ1Sz/X/QzMowfVGCDF+FbsbEm0YsDQ++q36X0nF897BDrJSU00vgeSOM9ZDk8xTvV4mC9R+7P1T8u28m7zVBQ/DfRICmptNZxOyVS3tpvFqJPvZrUxsBYwmuKQEpaggQHvbSyoHd2d8dmE9zpvbKHljC5uJ3LeoqvVs33y3pGGRX76JANYGatsk7EdWruVnZTIJEiOnFN3yDo85UyhRP2Dz0P321bhk0pzF//KsfoSHKx5xbC1623BsurGruVBEJ3JfsM7cDgrQ417S2SH0DtMqnxUdI1U8Aa98R9IWrzxaSxnj2rJd6Ks+jzEUkYNIFO5pMB+lv7WeqP6DQZqfhsXXRkJDyQXpDfiTKfN74LDHZ7pfHI9ezLQCHM4jn329EBjqpUCjkQ8O1zKfcrHPC3A9x1byBP+QYm65j20JIQ==[/tex]

    内容

    • 0

      试求一个正交相似变换矩阵,将下列实对称矩阵化为对角矩阵 [tex=6.143x3.5]075gCzZzsMRb6HYXYk9X9zQqYJzbaed4lVR97kGPEgvaxagvjk3Cgqe327d5yPrIDXRdgeKcg1hPBdODhJlpB6BFNmg9GQDNGPRBlXkZe1k=[/tex]

    • 1

      试求一个正交的相似变换矩阵,将对称矩阵转化为对角矩阵:[tex=8.643x3.929]075gCzZzsMRb6HYXYk9X9+LhKwEfeQLUt/9zH8jmuN65LuqXNteBsffpGMbokMsgE6dGBxRSxx8F1V9a7/xZa68BAxsEO/a9ueKIdpye5STFRlxijq4Ay+L1CYvUP3SW[/tex] .

    • 2

      试求一个正交的相似变换矩阵,将下列对称矩阵化为对角阵.[tex=8.643x3.929]jcCMHflCR8OS9TosV6N5vPxyX/KlTScF9+CLMTdetZQuCSqqkhCAbe5BYEncdsoJoRIPSiU3eaJqYR/bLxiSJSUvWAZP711wavuZNW0+uEm2Ue9U4QFDUPFVD99q/W8V[/tex]

    • 3

      试求一个正交的相似变换矩阵, 将对称阵化为对角阵:[tex=8.643x3.929]rwMhqGKFQ+j3l2qMx/grPuU41aihmhdv4Tbgs+tnIKN9ZnDoYwQs5QF6rZKmaE5cmKhRg9jTQpisZABggSZozITtrqfezsvgN8Y8vhx0geX76oZmLL0nSXJ52xuvyLyk[/tex].

    • 4

      试求一个正交的相似变换矩阵,将下列对称阵化为对角阵:[p=align:center][tex=8.643x3.929]075gCzZzsMRb6HYXYk9X9808YcdGPxFIQXcz0OPgP+TV8U6LhLCKsYfwAqhQecK7goBMQFoHdD5whlzgBSdCE+EaN1ycqDDjbr6UpjUekQPURAupailuFS053hB6hlAJ[/tex]