设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,秩[tex=2.571x1.0]/yOPTvvylwUw/NWGMopwvw==[/tex],从[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中任意划去[tex=2.143x1.071]5ReO1p6Wk2qzf53f+yCWSA==[/tex]行与 [tex=1.786x1.071]/Y2lSpOfgG/1zHiKJCTIJw==[/tex]列,其余元素按原来位置排成一个[tex=2.071x1.071]mDnbCqRr1pH68nnnIWoqpA==[/tex]矩阵[tex=0.714x1.0]zAR8JLTji7MW5PnI4azq+Q==[/tex]。证明,秩[tex=8.857x1.143]EyCVS0AZkMmqtMmx+3yPK/KVveHCqDWMHhTbHUeMaGI=[/tex]。
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵, 求证:(1) 若 [tex=3.357x1.357]a7qAbmiLBFc3iSK33Jqg/g==[/tex], 即 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是列满秩阵, 则必存在秩等于 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 的 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex]矩阵 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex], 使 [tex=3.214x1.214]qFuOqB/J5YwAsAHomJYPyw==[/tex];(2) 若 [tex=3.643x1.357]NrKc/6u1O1LFs1JAil+zeg==[/tex], 即 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是行满秩阵, 则必存在秩等于 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 的 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex] 矩阵 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex], 使 [tex=3.643x1.214]zyEHVZjYzQ8SDWBlfQFbZA==[/tex]
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]阶方阵,[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵, 矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 矩阵[tex=3.071x1.0]PxoG+lJftcaSXuD7xhU13Q==[/tex]的秩为[tex=0.857x1.0]5o/cLuWaJfzEVwUboXrosw==[/tex].试证[tex=2.071x1.0]USs9GFT0Wu9uFkvPUS/nkA==[/tex].
- 证明:设[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩为 $r,$ 则有 [tex=2.571x1.071]cx+2xSos1xod7QXaYyONqA==[/tex] 的列满秩矩阵[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]和 [tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex] 的行满秩矩阵[tex=1.071x1.214]yt4RbNiVhn8ZYcZyQJBRDA==[/tex]使[tex=3.286x1.214]2MpBj3HxuvgFGXLpO4ZTTA==[/tex]
- 设[tex=3.643x1.214]k0VQBkegJwBLxFCyzpXPSExN+eJySm0BJZ3gTKl3sZk=[/tex],[tex=4.143x1.0]k8PvTJe4iQVkvPfhUhxDGMhjLthuBa4S1gJaK+DK72A=[/tex],从矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中任意取出[tex=0.5x0.786]BgHR5DBWke5rTEC5XEckiQ==[/tex]个行,[tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex]个列上的交叉元素构成的[tex=2.071x1.071]mDnbCqRr1pH68nnnIWoqpA==[/tex]矩阵记为[tex=0.786x1.0]9uq8NvjklzVl/yrUHrVKTg==[/tex]。证明:[tex=10.143x1.143]k8PvTJe4iQVkvPfhUhxDGCm2mDu7pJ4fy9DzHLJfcf68ca4DFTyFoO041KY85XA/[/tex]。
- 证明:设[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 则有 [tex=2.571x1.071]cx+2xSos1xod7QXaYyONqA==[/tex] 的列满秩矩阵[tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex]和[tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex]的行满秩矩阵[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 使 [tex=3.286x1.214]2MpBj3HxuvgFGXLpO4ZTTA==[/tex]