• 2022-06-14
    用幂级数求微分方程的解:[tex=5.643x1.357]eE9dXkpN2effVrNkAbXJmNH7k5gzHUiF5TIvw8nkK04ILiXy0taVUMtqhknBIb8E[/tex] .
  • [b]解[/b]   这里[tex=3.357x1.357]Pdmck1IgGKbdwuz6hIgHsw==[/tex],[tex=3.429x1.357]568D2wVAJmzIieEa6akgNg==[/tex]满足定理的条件,设次方程的幂级数解为[tex=5.071x3.286]EpiGAiJnfZ1ApYNhhDr1LoLzEwKQqP+9d5U7IbPxgUjd5zOiVGZwW49cUT5C9oct[/tex],逐项求导,得[tex=6.786x3.286]Ux+CtbeiCt46iQPuR62JW7zHAMdwT/ZUvVmX7x1xFPqfMnI5vNjH9pmGX0KVuWH8[/tex],[tex=9.643x3.286]eE9dXkpN2effVrNkAbXJmEMgyHmRWBJOuMFxHLC8FxiCfutZwd1o3CUP8WtbyREav2KI2EmFJjMl+2xnvgRR0g==[/tex],代入原方程,得[tex=8.571x3.286]58kDwo9nJsOtolcxvi10OS61jXM6ZqiT6Gv70Nut6Xcm0UQn+z5/Y5biqWuomXhN[/tex][tex=11.643x3.286]FL78Mc4mEdSvstlD4OhxGZc+UA+Yw39CF4r2/AUDfINXADWHnzehLTEbw+obUq9Gi9xb90nB0JCWmFUJM7yLs3+gpbfObPqsTWFiZQulA3Y=[/tex]即 [tex=4.786x1.357]oZsqIu2wKNkcbI7oa8IIj3aVETgfSdBkjxCLyF1y8XE=[/tex][tex=9.714x3.286]VCAPAvn3gOPyP36rvxBwz6jAlePvJjRIXC6pkKMf/zXjBwwnhFQVmepH6sAg36bT79KE/vjR30A4/bcgv0necA==[/tex][tex=5.929x1.357]cPHIWU+WTjNHCf/Qiy+dweIJBq58Vh7r5Gmw5G3gnXQ=[/tex],比较系数,得[tex=3.786x2.143]zeb+1hyGX9X0FrB2wv7KlYHc4e+Pr3r0GT+2+wOJK2o=[/tex],[tex=5.714x2.214]q/WRZjCodSImUoESwVQYXvTyGcusifdc1M4sxkhQuUw=[/tex][tex=3.214x1.357]hUotiuXtSWws5cOubZzAmqQczjoOw6IwwGxUyBk5FlM=[/tex]记 [tex=2.786x1.214]IxqXjtlhyN2zRyOSv+mddw==[/tex],[tex=2.786x1.214]xdokeqG2WX9vv3QTn+UD6A==[/tex],则 [tex=3.929x2.429]5QvDLGTxpdZVEN7vgvKjWKksYSG6KavHpyjPyh6R//g=[/tex],[tex=3.929x2.429]NMx0LuaK5cxMgmAWxdPuusFJt7GU0VNV2mRRhuq9bQc=[/tex],[tex=3.786x2.429]JHl+NW6RwOkSuymyV1xQYpAlYSBgA8EN0oHafNmMMNk=[/tex],[tex=3.786x2.429]fDSHRnb8ESZNGi9ciIgvGPBonlShWv5V1rvoTl0xdRUdLCs6CP6pXihDWQWYGcWu[/tex][tex=1.286x0.786]lRSLJav0cvc1uYdx/9plcw==[/tex]        [tex=1.286x0.786]7FOD66ylBS9ic/vLXY8L3Q==[/tex][tex=6.929x2.429]phW30Kqp5+wLNHvRl43gr3A9D9HTQMdbuWNg7WYdvt0YMqu+M+6SVTP94g1IxecBIMx4VvR2yqiqqOnepVuHKg==[/tex], [tex=13.143x2.714]mY7LhZqcUv87Qhb5zE4D5ZWUzaiPustHn/Hc9vTbLSTRc8l0AebSV6g8SOkL7EYc0SYs/QXlvUCIUo03EZhy+ZLIL/aH+Y/+f/UF0PHOaXQ=[/tex][tex=8.286x2.714]ECkvmGgIxuH4selCK77FezxevSisA7yPSHfEILt3jj/xzs6nwkIrp1Xao0JOfC9Ye0zjvPOEJFGaemdVAdpQ4g==[/tex][tex=6.429x2.714]LCs/jzl+nr3KBTJXBn4IiWIwCvxmRABp4lQiJZ2E9a9jy0MmJVugzf0rGmgKDXMU[/tex][tex=8.714x3.286]9I15d2ILwGV4csl3I2dXonxQJB8jwjkfVZCDzukXc6eXknZgizvKA1FZnB/xA6NawB9rxgcV2O6+PqVVuWK3wA==[/tex][tex=9.286x3.286]M88tcApiZRLAc0C453+xfWc6zzI+4qCjbaU5rIYPVnQBY+Pa0W64/lJUewFf1mW9109dtmwHgQMATpctSjv5RsjqfnJSL8IS/DKjkKxcwek=[/tex][tex=9.929x3.286]9I15d2ILwGV4csl3I2dXonxQJB8jwjkfVZCDzukXc6cpnaf/zx9CwYY+hAgfL/tO4brUQhIUP34a16BFRTG9lFVdiXOSkR0mJrPaJL+3qoI=[/tex][tex=9.286x3.286]M88tcApiZRLAc0C453+xfWc6zzI+4qCjbaU5rIYPVnQBY+Pa0W64/lJUewFf1mW9109dtmwHgQMATpctSjv5Rt6bpWnnVkHYFU7tXsTq3/Y=[/tex][tex=5.071x1.5]K6FIsBMLjBt7SIzddq+gLWVEv0ryq7KDPm7r/QF2keQ=[/tex][tex=9.286x3.286]SS8WA65WrKEtvfQCvHnSCUw1Qw+KlWP87tGbl+Kln2ImdwJNdgQhkJt4hO7xX3EkeloTWSmO9w7gXU3Xua1jQJf79UKA1qg9OTy5lMai0eY=[/tex] .

    内容

    • 0

      试用幂级数求微分方程的解:[tex=7.071x1.286]Ei2PZQl92La73hUrygebc2dWwe3BmFFEL+ZxQKAKKa6LegeTx86X59rpggF0k9p7[/tex].

    • 1

      试用幂级数求微分方程的解:[tex=6.571x1.286]Vs6VEHMpqep2NJINYZfQcxoP3qBgZBujxj8txyjPXsc=[/tex].

    • 2

      [tex=22.0x1.357]LHJ+y85YXU3v8GHWdrdQw3Wkm42jO1uuQ9ReIJQjcZKuQS9dt8xQcTgSBjKkS3fb[/tex][color=#000000][b],[/b][/color][color=#000000][b]求 [/b][tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex][/color][color=#000000][b]全不发生的概率.[/b][/color] A: 3/8 B: 7/9 C: 5/9 D: 5/8

    • 3

      【单选题】请用地点定桩法在4分钟内记忆数字。 4 0 1 3 6 3 5 1 9 8 8 9 7 2 9 3 0 9 5 3 1 7 7 5 2 3 3 0 5 0 1 4 1 3 8 3 5 7 9 7 (5.0分) A. 已背 B. 未背

    • 4

      输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81