举一反三
- 证明:数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]是一个位似(即单位变换的一个标量倍)必要且只要[tex=0.571x0.786]KMF8QHqVjNLkn7nK5uaSag==[/tex]关于[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的任意基的矩阵都相等。
- 设[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维欧氏空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个对称变换,且 [tex=2.357x1.429]+yMFkw0zysC3uLtrSOQZ09GBG+hOAhyTY01pxf+r75A=[/tex]证明:存在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个规范正交基,使得[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]关于这个基的矩阵有形状[tex=10.857x9.071]QmgB+uf3dJtEGCfqWsvsJ3Yl11pTpyxMvvttlLaYv7GMvj3shyOfvKZVf90hLkYyqQWYnowyH9j+Rzfy8Pj95rInDOJsDLa2UGOm9ydWu8vmKL47nSsx/aXIKwA5JIqxa6mLWMtlUSjNF1izRxHhrdM2aF3u1TxCbNsgIU8XnkkHhMuyqb2TMhvwxyGsnYlY[/tex]。
- 设[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维欧氏空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换,证明,如果[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]满足下列三个条件中的任意两个,那么它必然满足第三个:(i) [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]是正交变换 ;(ii) [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]是对称变换 ;(iii) [tex=2.143x1.214]TgWU2H60MCP3QWfASXhzm5k+rB3TVbcEtS5UyIB4RHY=[/tex]是单位变换。
- 若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?
- 设[tex=0.571x0.786]KMF8QHqVjNLkn7nK5uaSag==[/tex]是数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个可以对角化的线性变换.令[tex=5.214x1.214]oNH2de8I1XfFs1vBi4Ose3+k4gVNeCQrrcTYvnWm5gU4pXp6C+S/rs8Jx0N8mpCenmBBIXgvXhe2OZ6+MI371w==[/tex]是[tex=0.571x0.786]KMF8QHqVjNLkn7nK5uaSag==[/tex]的全部本征值. 证明,存在[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的线性变换[tex=5.214x1.0]3kjPgmaK9gguubcUzpnAGqSO8Ik/uJF1du6FpfDzvPZQzb1yA1mjEFl0r/vm41Ja[/tex],使得[tex=7.786x1.143]88Kxo/E6XyomJ0a24FDl7jY3sXrJd8PSU2kaZZt/qpasAbuDw5gFLULFN7VzXeFr[/tex],[tex=0.357x0.786]wjiWjr5QLhwIIfwcNUAoqA==[/tex]是单位变换
内容
- 0
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量空间, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上线性变换全体组成的向量空间的维数为 未知类型:{'options': ['[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '[tex=4.214x2.357]IUzNW3ibLr/OWaHCXAUbVLoT+759jmG7AZpDREjIMyU=[/tex]', '[tex=1.0x1.214]uiEuUzx4dMJYCyEEsqGEJw==[/tex]', '无穷大'], 'type': 102}
- 1
令[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一些线性变换所成的集合。[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]如果在[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换之下不变,那么就说 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。说[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是不可约的,如果[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中没有非平凡的不变子空间。设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换,它与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换可交换。证明,[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换。 [ 提示 : 令 [tex=5.0x1.357]o2+7Gdi3IvIUF7x5ByZZytJ/TK5JsUQ7dq1ESJYAz0s=[/tex],证明[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。
- 2
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵组成的线性空间, 令 [tex=14.071x1.357]526RfeuoVuYFKMeevCzg3ALQwrIMoLSjnd4jNqAgq3b0SbOJw1J3W132MAq3sEvgFgMY+RJMUHzLRJJVfTrs8Q==[/tex] 是第 [tex=1.857x1.357]DPfV/kz2+j7DkAnudNw66w==[/tex] 元素为 1 、其余元素为 0 的 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵, 求证: 全体 [tex=1.286x1.286]TpiThXZs62EvtJGFwo2zsw==[/tex] 组成了 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基, 因而 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=1.5x0.786]uDlrM/k6mXUKzRmRUTQRAw==[/tex] 维线性空间.
- 3
设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个双线性函数. 证明:[tex=13.429x1.286]MyfT4pXHX7fJ0rpluwSnCSQO5KLtoJ5AHPQd3E61UJQvL19TIkXjV01aXM872yvLt3VghIHvCdD9z7mcCrYvKyvKps/gVcCnQ+hpLcDaTdU=[/tex].
- 4
(1)构造一个连续函数,它仅在已知点[tex=0.929x1.0]qh9CWHOcuuaSIXcHedVE7Q==[/tex],[tex=0.929x1.0]CoVdHs2biybTU/WOehPjnQ==[/tex],[tex=1.286x0.786]lRSLJav0cvc1uYdx/9plcw==[/tex],[tex=1.0x1.0]0GU//5PJyC1ZogOpKG0U3A==[/tex]处不可导;(2)构造一个函数,它仅在点[tex=0.929x1.0]qh9CWHOcuuaSIXcHedVE7Q==[/tex],[tex=0.929x1.0]CoVdHs2biybTU/WOehPjnQ==[/tex],[tex=1.286x0.786]lRSLJav0cvc1uYdx/9plcw==[/tex],[tex=1.0x1.0]0GU//5PJyC1ZogOpKG0U3A==[/tex]处可导。