举一反三
- [color=#000000]半径为[/color][tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex][color=#000000][/color][color=#000000]的薄圆盘带正电 [/color][color=#000000],[/color][color=#000000]电荷在其上均匀[/color][color=#000000]分布 [/color][color=#000000],[/color][color=#000000]面密度为 [/color][color=#000000][tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex].[/color][color=#000000]试求 [/color][color=#000000]:[/color][color=#000000]比较 [/color][color=#000000][tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] [/color][color=#000000]点和圆心 [/color][color=#000000][tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex] [/color][color=#000000]处电势的大小[/color]
- [color=#000000]半径为[/color][tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex][color=#000000][/color][color=#000000]的薄圆盘带正电 [/color][color=#000000],[/color][color=#000000]电荷在其上均匀[/color][color=#000000]分布 [/color][color=#000000],[/color][color=#000000]面密度为 [/color][color=#000000][tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex].[/color][color=#000000]试求 [/color][color=#000000]:[/color][color=#000000]求圆盘边缘上一点 [/color][color=#000000][tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] [/color][color=#000000]的 [/color][color=#000000]电势 [/color]
- [color=#000000]一桶内盛水 [/color][color=#000000],[/color][color=#000000]系于[/color][color=#000000]绳[/color][color=#000000]的[/color][color=#000000]一[/color][color=#000000]端 [/color][color=#000000],[/color][color=#000000]并绕 [/color][color=#000000][tex=0.5x0.786]SQhXiI0F7ygwU/RA5gtDkA==[/tex][/color][color=#000000]点以角速度 [/color][color=#000000][tex=0.643x0.786]AXX81H1aJipmZ3Hxs77Mpw==[/tex] [/color][color=#000000]在铅直平面内旋转 [/color][color=#000000].[/color][color=#000000]设水的质量为[/color][tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex][color=#000000] [/color][color=#000000],[/color][color=#000000]桶的质量为 [/color][color=#000000][tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex][/color][color=#000000],[/color][color=#000000]圆周半径为[/color][tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex][color=#000000] [/color][color=#000000],[/color][color=#000000]问[/color][tex=0.643x0.786]AXX81H1aJipmZ3Hxs77Mpw==[/tex][color=#000000][/color][color=#000000]为多大[/color][color=#000000]时 [/color][color=#000000],[/color][color=#000000]才能保证水流不出来 [/color][color=#000000]?[/color]
- [color=#000000]在半径为 [/color][color=#000000][tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex][/color][color=#000000]的圆柱形空间里 [/color][color=#000000],[/color][color=#000000]有垂直纸面向里的均匀磁场且此磁场以[/color][color=#000000]恒定的变化率[/color][color=#000000][/color][tex=1.571x2.429]eHmJ6WkcVxLNZ4Gfz3qUfuow2M2xrrUFDh+sNz7cc4yJCs+BHhk8tf71D9ZzsPqe[/tex][color=#000000][/color][color=#000000]增[/color][color=#000000]加 [/color][color=#000000].[/color][color=#000000]边长[/color][color=#000000]为[/color][tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex][color=#000000][/color][color=#000000]的[/color][color=#000000]等[/color][color=#000000]边[/color][color=#000000]三[/color][color=#000000]角[/color][color=#000000]形[/color][color=#000000]金[/color][color=#000000]属[/color][color=#000000]线[/color][color=#000000]框 [/color][color=#000000][/color][tex=1.786x1.0]GwQM4Vwx1P03gHcYxq1OpQ==[/tex][color=#000000][/color][color=#000000]放[/color][color=#000000]在圆[/color][color=#000000]柱形磁场中 [/color][color=#000000], [/color][color=#000000]如图所示 [/color][color=#000000],[/color][color=#000000]其平[/color][color=#000000]面[/color][color=#000000]垂[/color][color=#000000]直于[/color][tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex][color=#000000] [/color][color=#000000].[/color][color=#000000]试求[/color][color=#000000]线[/color][color=#000000]圈[/color][color=#000000]中[/color][color=#000000]感[/color][color=#000000]应[/color][color=#000000]电[/color][color=#000000]动[/color][color=#000000]势[/color][color=#000000]的[/color][color=#000000]大[/color][color=#000000]小[/color][color=#000000]和[/color][color=#000000]方[/color][color=#000000]向 [/color][color=#000000].[/color][color=#000000][img=196x252]17ab500c269211a.png[/img][/color]
- [color=#000000]一绳跨过一定滑轮 [/color][color=#000000],[/color][color=#000000]两端分别拴有质量为[/color][tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex][color=#000000] [/color][color=#000000]及 [/color][color=#000000][tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex] [/color][color=#000000]的物体 [/color][color=#000000],[/color][color=#000000]如图 4.16[/color][color=#000000] [/color][color=#000000]所示 [/color][color=#000000],[/color][color=#000000][tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex][/color][color=#000000]静止在桌面上[/color][color=#000000]([/color][tex=3.214x1.071]yLMsO+gFKeQKwKbRO4SoQQ==[/tex][color=#000000][/color][color=#000000]) .[/color][color=#000000]抬高 [/color][color=#000000][tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex][/color][color=#000000],[/color][color=#000000]使绳处于松弛 [/color][color=#000000]状态 [/color][color=#000000].[/color][color=#000000]当 [/color][color=#000000][tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex][/color][color=#000000]自由落下 [/color][color=#000000][tex=0.643x1.0]8+M7OwdUGZPUoOQAaQHP2A==[/tex][/color][color=#000000]距离后 [/color][color=#000000],[/color][color=#000000]绳才被拉紧 [/color][color=#000000],[/color][color=#000000]求此时两物[/color][color=#000000]体的速度及 [/color][color=#000000][tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex][/color][color=#000000]所能上升的最大高度[/color][color=#000000]([/color][color=#000000]提示 [/color][color=#000000]:[/color][color=#000000]分三阶段考[/color][color=#000000]虑[/color][color=#000000]) [/color]
内容
- 0
[color=#000000]飞船[/color][tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex][color=#000000][/color][color=#000000]和飞船[/color][tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex][color=#000000] [/color][color=#000000]相对于地面以 [/color][color=#000000][/color][tex=1.714x1.0]Rhlrue0nv8XQVIVDA+hN8w==[/tex][color=#000000][/color][color=#000000]和 [/color][color=#000000][/color][tex=1.714x1.0]5C8FoUYhOdOILDYc7N3mXA==[/tex][color=#000000][/color][color=#000000]的速度相向而行 [/color][color=#000000]. [/color][color=#000000]问 [/color][color=#000000]:[/color][color=#000000]飞船[/color][tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex][color=#000000][/color][color=#000000]上测得地球的速度是多少 [/color][color=#000000]?[/color]
- 1
[color=#000000]一桶内盛水 [/color][color=#000000],[/color][color=#000000]系于[/color][color=#000000]绳[/color][color=#000000]的[/color][color=#000000]一[/color][color=#000000]端 [/color][color=#000000],[/color][color=#000000]并绕 [/color][color=#000000][tex=0.5x0.786]SQhXiI0F7ygwU/RA5gtDkA==[/tex][/color][color=#000000]点以角速度 [/color][color=#000000][tex=0.643x0.786]AXX81H1aJipmZ3Hxs77Mpw==[/tex] [/color][color=#000000]在铅直平面内旋转 [/color][color=#000000].[/color][color=#000000]设水的质量为[/color][tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex][color=#000000] [/color][color=#000000],[/color][color=#000000]桶的质量为 [/color][color=#000000][tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex][/color][color=#000000],[/color][color=#000000]圆周半径为[/color][tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex][color=#000000] [/color][color=#000000],[/color][color=#000000]问在最高点和最低[/color][color=#000000]点时绳中的张力多大 [/color][color=#000000]?[/color]
- 2
[color=#000000]半径为[/color][tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex][color=#000000][/color][color=#000000]的薄圆盘带正电 [/color][color=#000000],[/color][color=#000000]电荷在其上均匀[/color][color=#000000]分布 [/color][color=#000000],[/color][color=#000000]面密度为 [/color][color=#000000][tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex].[/color][color=#000000]试求 [/color][color=#000000]:[/color][color=#000000]圆盘轴线上的电势分布 [/color]
- 3
[color=#000000]半径为[/color][tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex][color=#000000] [/color][color=#000000]的[/color][color=#000000]“[/color][color=#000000]无限长[/color][color=#000000]”[/color][color=#000000]的均匀带电直圆柱体 [/color][color=#000000],[/color][color=#000000]设体密度为[/color][tex=0.571x1.0]hPvvoj2wbfpbBBU9Fgv0pA==[/tex][color=#000000],[/color][color=#000000]试求圆柱[/color][color=#000000]体内和圆柱体外任一点的电场强度 [/color][color=#000000].[/color]
- 4
[color=#000000]有两个完全相同的弹簧振子 [/color][color=#000000][tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex] [/color][color=#000000]和 [/color][color=#000000][tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex][/color][color=#000000],[/color][color=#000000]并排放在光[/color][color=#000000]滑[/color][color=#000000]的[/color][color=#000000]水平面上 [/color][color=#000000],[/color][color=#000000]测得它 [/color][color=#000000]们的周期都是 [/color][color=#000000][/color][tex=1.0x1.0]cian3SosCjZI0rR5ttt5+Q==[/tex][color=#000000] [/color][color=#000000],[/color][color=#000000]现将两振子[/color][color=#000000]从[/color][color=#000000]平[/color][color=#000000]衡[/color][color=#000000]位置[/color][color=#000000]向[/color][color=#000000]右[/color][color=#000000]拉[/color][color=#000000]开[/color][tex=1.857x1.0]eD0ltVJ+hZBMdhlv8gCj0w==[/tex][color=#000000][/color][color=#000000],[/color][color=#000000]然[/color][color=#000000]后[/color][color=#000000]无[/color][color=#000000]初[/color][color=#000000]速[/color][color=#000000]的[/color][color=#000000]先[/color][color=#000000]释[/color][color=#000000]放[/color][tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex][color=#000000] [/color][color=#000000], [/color][color=#000000]经过 [/color][color=#000000][/color][tex=1.786x1.0]TL5iTDBGG/UnkrMDbSJQDA==[/tex][color=#000000] [/color][color=#000000]后 [/color][color=#000000],[/color][color=#000000]再释放[/color][tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex][color=#000000][/color][color=#000000]振子 [/color][color=#000000].[/color][color=#000000]求[/color][color=#000000]它[/color][color=#000000]们[/color][color=#000000]之[/color][color=#000000]间[/color][color=#000000]的[/color][color=#000000]相[/color][color=#000000]位[/color][color=#000000]差 [/color][color=#000000].[/color][color=#000000]若[/color][color=#000000]以[/color][tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex] [color=#000000][/color][color=#000000]振[/color][color=#000000]子[/color][color=#000000]刚[/color][color=#000000]开[/color][color=#000000]始[/color][color=#000000]运[/color][color=#000000]动[/color][color=#000000]的瞬[/color][color=#000000]时为计时起始时刻 [/color][color=#000000],[/color][color=#000000]试写出两振子的运动学方程 [/color][color=#000000].[/color]