设 [tex=2.714x1.214]H+eWYxlrz4hqdq+frO1Mpg==[/tex] 证明: [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex] 个互不相同的素数的几何平均数一定是无理数.
举一反三
- 已知整数[tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex],[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]都大于1,[tex=2.286x1.143]Dj0Q3l5TFQyUN0gCaGrv2A==[/tex]是素数,求证[tex=1.857x1.0]hbkUQ2X/71dsuvn1xCcr8g==[/tex]且[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]是素数
- 证明:方程[tex=5.429x1.214]unY/GxrtAwP+9oZ/4P89yQ==[/tex]([tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为正整数,[tex=1.429x1.0]EHzsglf5n1gYY95L4Z4giQ==[/tex]为实数),当[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为偶数时至多有两个实根,当 [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]为奇数时至多有三个实根.[br][/br][br][/br]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级矩阵, 证明: [tex=0.786x1.0]Gl8myqGBf3V5xKlLwXodGw==[/tex] 的特征多项式的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个复根的和等于 [tex=2.786x1.357]ApBtKiFHAOgbksEzlkUgQb0P7vZ4TEOJWYYit3gGoiM=[/tex] [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex] 个复根的乘积等于 [tex=1.643x1.357]3GUtP1KRCaX9J7Wil+ASkA==[/tex]
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]次多项式[tex=3.214x1.357]kTpMd2BI8LQ4Hmb8qBngfHbPirYnb5xBfDti2joKxn0=[/tex],又[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为凸函数,试证[tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex]必为偶数.
- [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex] 维欧氏空间中任一正交变换均可表示为不超过 [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex] 个镜像变换之积.